345449.vhj5l3oj7.asia ChainOfResponsibility.py 2001-12-26T16:00:00Z 2001-12-26T16:00:00Z <br/><TEXTAREA name="code" class="py" rows="16" cols="100">#: c06:ChainOfResponsibility.py # Carry the information into the strategy: class Messenger: pass # The Result object carries the result data and # whether the strategy was successful: class Result: def __init__(self): self.succeeded = 0 def isSuccessful(self): return self.succeeded def setSuccessful(self, succeeded): self.succeeded = succeeded class Strategy: def __call__(messenger): pass def __str__(self): return &quot;Trying &quot; + self.__class__.__name__ \ + &quot; algorithm&quot; # Manage the movement through the chain and # find a successful result: class ChainLink: def __init__(self, chain, strategy): self.strategy = strategy self.chain = chain self.chain.append(self) def next(self): # Where this link is in the chain: location = self.chain.index(self) if not self.end(): return self.chain[location + 1] def end(self): return (self.chain.index(self) + 1 &gt;= len(self.chain)) def __call__(self, messenger): r = self.strategy(messenger) if r.isSuccessful() or self.end(): return r return self.next()(messenger) # For this example, the Messenger # and Result can be the same type: class LineData(Result, Messenger): def __init__(self, data): self.data = data def __str__(self): return `self.data` class LeastSquares(Strategy): def __call__(self, messenger): print self linedata = messenger # [ Actual test/calculation here ] result = LineData([1.1, 2.2]) # Dummy data result.setSuccessful(0) return result class NewtonsMethod(Strategy): def __call__(self, messenger): print self linedata = messenger # [ Actual test/calculation here ] result = LineData([3.3, 4.4]) # Dummy data result.setSuccessful(0) return result class Bisection(Strategy): def __call__(self, messenger): print self linedata = messenger # [ Actual test/calculation here ] result = LineData([5.5, 6.6]) # Dummy data result.setSuccessful(1) return result class ConjugateGradient(Strategy): def __call__(self, messenger): print self linedata = messenger # [ Actual test/calculation here ] result = LineData([7.7, 8.8]) # Dummy data result.setSuccessful(1) return result solutions = [] solutions = [ ChainLink(solutions, LeastSquares()), ChainLink(solutions, NewtonsMethod()), ChainLink(solutions, Bisection()), ChainLink(solutions, ConjugateGradient()) ] line = LineData([ 1.0, 2.0, 1.0, 2.0, -1.0, 3.0, 4.0, 5.0, 4.0 ]) print solutions[0](line) #:~</TEXTAREA><br><br/><script type="text/javascript"><!--google_ad_client = "pub-9426659565807829";google_ad_slot = "9359905831";google_ad_width = 728;google_ad_height = 15;//--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script> 2001-12-26T16:00:00Z CommandPattern.py 2001-12-26T16:00:00Z 2001-12-26T16:00:00Z <br/><TEXTAREA name="code" class="py" rows="16" cols="100">#: c06:CommandPattern.py class Command: def execute(self): pass class Loony(Command): def execute(self): print &quot;You're a loony.&quot; class NewBrain(Command): def execute(self): print &quot;You might even need a new brain.&quot; class Afford(Command): def execute(self): print &quot;I couldn't afford a whole new brain.&quot; # An object that holds commands: class Macro: def __init__(self): self.commands = [] def add(self, command): self.commands.append(command) def run(self): for c in self.commands: c.execute() macro = Macro() macro.add(Loony()) macro.add(NewBrain()) macro.add(Afford()) macro.run() #:~</TEXTAREA><br><br/><script type="text/javascript"><!--google_ad_client = "pub-9426659565807829";google_ad_slot = "9359905831";google_ad_width = 728;google_ad_height = 15;//--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script> 2001-12-26T16:00:00Z StrategyPattern.py 2001-12-26T16:00:00Z 2001-12-26T16:00:00Z <br/><TEXTAREA name="code" class="py" rows="16" cols="100">#: c06:StrategyPattern.py # The strategy interface: class FindMinima: # Line is a sequence of points: def algorithm(self, line) : pass # The various strategies: class LeastSquares(FindMinima): def algorithm(self, line): return [ 1.1, 2.2 ] # Dummy class NewtonsMethod(FindMinima): def algorithm(self, line): return [ 3.3, 4.4 ] # Dummy class Bisection(FindMinima): def algorithm(self, line): return [ 5.5, 6.6 ] # Dummy class ConjugateGradient(FindMinima): def algorithm(self, line): return [ 3.3, 4.4 ] # Dummy # The &quot;Context&quot; controls the strategy: class MinimaSolver: def __init__(self, strategy): self.strategy = strategy def minima(self, line): return self.strategy.algorithm(line) def changeAlgorithm(self, newAlgorithm): self.strategy = newAlgorithm solver = MinimaSolver(LeastSquares()) line = [ 1.0, 2.0, 1.0, 2.0, -1.0, 3.0, 4.0, 5.0, 4.0 ] print solver.minima(line) solver.changeAlgorithm(Bisection()) print solver.minima(line) #:~</TEXTAREA><br><br/><script type="text/javascript"><!--google_ad_client = "pub-9426659565807829";google_ad_slot = "9359905831";google_ad_width = 728;google_ad_height = 15;//--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script> 2001-12-26T16:00:00Z