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1 About This Book

 

The purpose of this book is to provide fundamental high-level information about 
the Mac OS X core operating system architecture. It also provides background for 
system programmers and developers of device drivers, file systems, and network 
extensions. The book concentrates on those areas where Mac OS X system 
architecture differs from other, similar operating systems.

Therefore, this book does not delve deeply into the specific 

 

API

 

s or programmatic 
use of the individual components of the Mac OS X core operating system, 
collectively known as the 

 

kernel

 

. These components include 

 

Mach

 

, 

 

BSD

 

, the 

 

I/O 
Kit

 

, networking, and the file system. To learn more about how to program for these 
components, you should see the specific documentation for each of them.
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About This Book

 

Audience Profile

 

This book has a wide and diverse audience – specifically, the set of potential system 
software developers for Mac OS X. It is anticipated that the audience will consist 
primarily of the following sorts of developers:

 

�

 

Device driver writers —

 

 Device driver writers make up the largest portion of 
the audience. You will be some of the first developers to start writing code for 
Mac OS X. Most device driver writers will have come from one of the following 
platform backgrounds:

 

�

 

Generic device drivers (third party solutions)—

 

Your company writes 
drivers for many operating systems – Mac OS, Microsoft Windows, Linux, 
and so forth. You’d like to know how writing for Mac OS X will be different 
(and how it will be similar).

 

�

 

UNIX platforms and variants of UNIX platforms such as FreeBSD, Linux, 
Solaris, and others—

 

You’ve been writing drivers for platforms such as 
Linux and FreeBSD. You want to know how to modify your code (or change 
your habits) when writing for Mac OS X. You may have certain preconceived 
notions about writing device drivers. The kernel environment model in Mac 
OS X differs in several respects from what you are used to; you’ll need to 
understand those differences.

 

�

 

Windows NT—

 

You have been writing for the Windows NT platform. Now, 
you have decided to broaden your scope. You need to know how to write for 
Mac OS X.

 

�

 

Mac OS (Classic)—

 

You have been writing drivers for Mac OS for a long time 
and you know everything there is to know about Mac OS 8 and 9. However, 
Mac OS X is different. You need to know how to modify your code (or change 
your habits) when porting to Mac OS X.

 

�

 

NeXT (OpenStep) —

 

You wrote drivers for OpenStep. You’re hoping that 
some of what you learned is still applicable. You need to know how to 
modify your code (or change your habits) when writing for Mac OS X.

 

�

 

Network extension writers —

 

You need to know how the networking 
subsystem fits in with the rest of the core operating system. You come from a 
platform background similar to the device driver writers.
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�

 

File system writers—

 

You want to support a file system such as AFS or NTFS. 
You need to understand how to fit your code into Mac OS X.

 

�

 

Developers of software requiring very low level access to file system data—

 

 
You are writing software that needs low level access to the file system, 
applications such as “on-the-fly” compression, encryption, and virus checking. 
You need to understand how to write Virtual File System stacks to add value on 
top of Mac OS X.

 

�

 

System programmers familiar with BSD, Linux, and similar operating 
systems —

 

As a system programmer, you’re wondering what Mac OS X has to 
offer you. This book will address the differences between Mac OS X and the 
“standard” BSD and Mach 3.0 implementations.

 

�

 

Customers with special requirements—

 

Because the Mac OS X kernel 
technology is Open Source, some developers will be planning to make changes 
to the underlying operating system in order to meet special requirements at their 
sites (or example, a university customer may wish to add Kerberos support). 
This book will tell you how the parts of the Mac OS X kernel fit together and 
interact.

 

�

 

Applications developers, students and others —

 

 You’re not a system 
programmer, but you’re interested in how Mac OS X is put together. You may 
already be familiar with BSD, Linux, or other UNIX variants and possibly 
Windows NT as well. Although you don’t expect to need to know a great deal 
about the kernel environment, you are nonetheless interested in some details of 
memory allocation, process management, and the like.

 

Road Map

 

The goal of this book is to describe the underlying global concepts of the core 
operating system development environment. That is, it describes shared concepts 
that are not specific to any one of the primary subsystems: Mach, the I/O Kit, BSD, 
file systems, or networking. All concepts should be applicable to each of these 
subsystems and are therefore useful to developers in all “camps” (such as 
device-driver writers).
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About This Book

 

This book will not delve deeply into the specific APIs or programmatic use of the 
individual subsystems of the operating system. Each of these subsystems will be the 
subject of its own documentation.

The chapters of this book describe the kernel environment from different angles. 
Discussion of specific APIs, however, will be left to more in-depth 
component-specific documentation.

The next chapter provides an overview of Mac OS X architecture. There follow 
several chapters that discuss each of the architectural components of Mac OS X in 
more detail, one chapter per component. These are followed in turn by a chapter 
that discusses extending the kernel, from a conceptual viewpoint. 

The last chapter covers available kernel services. For each service, it provides a brief 
description as well as listing which components are either a provider or a client. The 
book ends with a glossary of terms used throughout the preceding chapters as well 
as a comprehensive reference bibliography.

The glossary covers many of the terms used throughout the earlier chapters of this 
book; these terms will be highlighted in bold when first used. Rather than stop and 
define each term as it appears, the definitions have been moved to the end. If a term 
seems familiar, it probably means what you think it does. If it’s unfamiliar, check 
the glossary. In any case, all readers may want to skim through the glossary, in case 
there are subtle differences between Mac OS X usage and that of other operating 
systems.

The bibliography provides numerous pointers and references to other reference 
materials. The goal of this book is very broad, providing a firm grounding in the 
fundamentals of Mac OS X kernel programming for developers from many 
backgrounds. Unfortunately, to do a complete and comprehensive job would fill an 
entire library, rather than one book. Instead, this book includes references to 
additional publications already in existence. Some of these are Apple publications; 
others are external documents. To make things easier, the bibliographic references 
are grouped into categories.

By the time you have finished this book, you should have a basic understanding of 
Mac OS X system internals and how to begin programming Mac OS X system 
software. You should also have a good idea of what you’ll need to read next.
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Other Apple Publications

 

Apple is planning a series of 

 

Inside Mac OS X

 

 books. This book, 

 

Kernel Environment

 

, 
is part of that series. Be sure to read the first book in the series, 

 

System Overview

 

, if 
you are not familiar with Mac OS X. 

You can obtain other books in the series (as they become available) using the 
publish-on-demand arrangement Apple has with Fatbrain.com. To obtain your 
printed copy of an 

 

Inside Mac OS X

 

 book, go to the 

 

www.fatbrain.com

 

 website and 
click the link in the Doc Center section. Then follow the directions. The book should 
be delivered to you within a few business days.

 

Information on the Web

 

Apple maintains several websites where developers can go for general and 
technical information on Mac OS X. 

 

�

 

Apple Developer Connection: Developer Documentation 
(

 

developer.apple.com/techpubs

 

) — Features the same documentation that is 
installed on Mac OS X, except that often the documentation is more up-to-date. 
Also includes legacy documentation.

 

�

 

Apple Developer Connection: Mac OS X (

 

developer.apple.com/macosx

 

) — Offers 
SDKs, release notes, product notes and news, and other resources and 
information related to Mac OS X.

 

�

 

AppleCare Tech Info Library (

 

til.info.apple.com

 

) — Contains technical 
articles, tutorials, FAQs, technical notes, and other information. 
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2 Kernel Architecture

 

Mac OS X provides many benefits to the Macintosh user and developer 
communities. These benefits include improved reliability and performance, 
enhanced networking features, an object-based system programming interface, and 
increased support for industry standards. 

In creating Mac OS X, Apple has completely re-engineered the Mac OS core 
operating system. Forming the foundation of Mac OS X is the kernel. The figure 
below illustrates the Mac OS X architecture.

 

Figure 2-1

 

Mac OS X architecture

 

The kernel provides many enhancements for Mac OS X. These include 

 

preemption

 

, 

 

memory protection

 

, enhanced performance, improved networking facilities, 
support for both Macintosh (Extended and Standard) and non-Macintosh (UFS, ISO 
9660) file systems, object-oriented APIs, and more. Two of these features, 
preemption and memory protection, lead to a more robust environment. 

BSDCocoa Carbon Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment
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In Mac OS 8 and 9, applications cooperate to share processor time. Similarly, all 
applications share the memory of the computer among them. Mac OS 8 and 9 are 

 

cooperative multitasking

 

 environments. The responsiveness of all processes is 
compromised if even a single application doesn’t cooperate. On the other hand, 
real-time applications such as multimedia need to be assured of predictable, 
time-critical, behavior.

In contrast, Mac OS X is a 

 

preemptive multitasking

 

 environment. In Mac OS X, the 
kernel provides enforcement of cooperation, scheduling processes to share time 
(preemption). This supports real-time behavior in applications that require it. 

In Mac OS X, processes do not normally share memory. Instead, the kernel assigns 
each 

 

process

 

 its own 

 

address space

 

, controlling access to these address spaces. This 
control ensures that no application can inadvertently access or modify another 
application’s memory (protection). Size is not an issue; with Mac OS X's virtual 
memory system, each application has access to its own 4 GB memory address space. 

Viewed together, all applications are said to run in “user space”, but this does not 
imply that they share memory. User space is simply a term for the combined 
address spaces of all user-level applications. The kernel itself has its own address 
space, called kernel space. In Mac OS X, no application can modify the memory of 
the system software (the kernel). 

Although user processes do not share memory by default as in Mac OS 8 and 9, 
communication (and even memory sharing) between applications is still possible. 
For example, the kernel offers a rich set of primitives to permit some sharing of 
information among processes. These primitives include shared libraries and 
frameworks. Mach messaging provides another approach, handing memory from 
one process to another. Unlike Mac OS 8 and 9, however, memory sharing cannot 
occur without explicit action by the programmer.

 

Darwin

 

The Mac OS X kernel is a key part of Apple’s 

 

Open Source

 

 initiative. The Mac OS X 
kernel is also the core of an operating system product called 

 

Darwin

 

. Darwin is a 
complete operating system based on many of the same technologies that underlie 
Mac OS X. However, Darwin does not include Apple’s proprietary graphics or 
applications layers, such as Quartz, QuickTime, or OpenGL. 
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Figure 1-2 below shows the relationship between Darwin and Mac OS X. Both build 
upon the same kernel, but Mac OS X adds Core services, Application services and 
QuickTime, as well as the

 

Classic

 

, 

 

Carbon

 

, 

 

Cocoa

 

, and Java (JDK) application 
environments. Both Darwin and Mac OS X include the BSD command line 
application environment; however, in Mac OS X, this environment is usually 
hidden.

 

Figure 2-2

 

Darwin is a subset of Mac OS X

 

Darwin technology is based on 

 

BSD

 

, Mach 3.0, and Apple technologies. Best of all, 
Darwin technology is Open Source technology, which means that developers have 
full access to the source code. In effect, Mac OS X third-party developers can be part 
of the Darwin core system software development team. Developers can also see 
how Apple is doing things in the core operating system, adopting (or adapting) 
code to use within their own products. Refer to the 

 

Apple Public Source License

 

 
for details.

Because the same system software forms the core of both Mac OS X and Darwin, 
system software developers will be able to write software that will run on both Mac 
OS X and Darwin with few, if any, required changes. The only difference might be 
in the way the software interacts with the application environment. 

The Mac OS X core operating system is based on proven technology from many 
sources. A large portion of this technology is derived from FreeBSD, a version of 
4.4BSD that offers advanced networking, performance, security and compatibility 
features. Other parts of the system software, such as Mach, are based on technology 
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Kernel Architecture

 

previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology 
acquired from NeXT. Much of the code is platform-independent. All of the core 
operating system code is available in source form.

The core technologies have been chosen for several reasons. Mach provides a clean 
set of abstractions for dealing with memory management, inter-process (and 
interprocessor) communication, and other low-level operating system functions. In 
today’s rapidly changing hardware environment, this provides a useful layer of 
insulation between the operating system and the underlying hardware. 

BSD is a carefully engineered, mature operating system with many capabilities. In 
fact, most of today’s commercial Linux, UNIX, and other similar operating systems 
contain a great deal of BSD code. BSD also provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKE), have 
been designed and engineered by Apple to take advantage of advanced capabilities, 
such as those provided by an object-oriented programming model. Mac OS X 
combines these new technologies with time-tested industry standards to create an 
operating system that is stable, reliable, flexible, and extensible.

 

Architecture

 

The foundation layer of Darwin and Mac OS X is composed of several architectural 
components, as shown in the figure below. Taken together, these components form 
the 

 

kernel environment

 

 or simply, the kernel. 
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Figure 2-3

 

Mac OS X kernel architecture

 

Important

 

Note that Mac OS X uses the term 

 

kernel

 

 somewhat 
differently than you may be used to seeing it used.

 

A kernel, in traditional operating system terminology, is a small nucleus of software that 
provides only the minimal facilities necessary for implementing additional operating-system 
services.

 

 — from 

 

The Design and Implementation of the 4.4 BSD Operating System

 

, 
McKusick, Bostic, Karels, and Quarterman, 1996

Instead, Mac OS X uses the term kernel to refer to everything that executes in the 
kernel address space. 

The Mac OS X kernel includes Mach, BSD, the I/O Kit, file systems, and networking 
components. Each of these components is described briefly in the following 
sections. For further details, refer to the specific component chapters or to the 
reference material listed in the Bibliography.

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit
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Mach

 

Mach manages processor resources such as CPU usage and memory, handles 
scheduling, provides memory protection, and provides a messaging centered 
infrastructure to the rest of the operating system layers. The Mach component 
provides:

 

�

 

untyped 

 

IPC

 

 and 

 

RPC

 

�

 

support for 

 

SMP

 

�

 

support for 

 

real-time

 

 services

 

�

 

external pager

 

�

 

modular architecture

 

�

 

improved performance

 

BSD 

 

Above the Mach layer, the BSD layer provides “OS personality” APIs and services. 
The BSD layer is based on the BSD operating system kernel, primarily 

 

FreeBSD

 

 . 
The BSD component provides:

 

�

 

file systems

 

�

 

networking

 

�

 

basic security policies such as user IDs and permissions

 

�

 

the system framework – a mechanism for exporting APIs to the application 
layers

 

�

 

the BSD process model, including process IDs and signals

 

�

 

FreeBSD kernel APIs

 

�

 

Many of the 

 

POSIX

 

 APIs

 

�

 

Pthreads

 

 (POSIX threads implementation)
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I/O Kit

 

The I/O Kit provides a framework for simplified driver development, supporting 
many categories of devices.The I/O Kit features an object-oriented I/O architecture 
implemented in a restricted subset of C++. The I/O Kit framework is both modular 
and extensible. The I/O Kit component provides:

 

�

 

true plug and play

 

�

 

dynamic device management

 

�

 

dynamic (“on-demand”) loading of drivers

 

�

 

power management for desktop systems as well as portables

 

�

 

multiprocessor capabilities

 

Networking

 

Mac OS X networking takes advantage of BSD’s advanced networking capabilities 
to provide support for modern features, such as Network Address Translation 
(

 

NAT

 

) and 

 

firewalls

 

. The networking component provides:

 

�

 

4.4BSD TCP/IP stack and socket APIs

 

�

 

support for both IP and AppleTalk

 

�

 

multi-homing

 

�

 

routing

 

�

 

multicast

 

 support

 

�

 

server tuning

 

�

 

socket-based AppleTalk

� Mac OS Classic support

� Carbonized Open Transport APIs
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File Systems
Mac OS X provides support for numerous types of file systems, including HFS, 
HFS+, UFS, NFS, ISO 9660, and others. The default file system type is HFS+; Mac 
OS X boots (and “roots”) from HFS+. Advanced features of Mac OS X file systems 
include an enhanced Virtual File System (VFS) design. VFS provides for a layered 
architecture (file systems are stackable). The file system component provides:

� UTF-8 (Unicode) support

� increased performance

Kernel Extensions

Mac OS X provides a kernel extension mechanism as a means of allowing dynamic 
loading of pieces of code into the kernel, without the need to recompile. These 
pieces of code are known generically as plug-ins or in the Mac OS X kernel as kernel 
extensions or KEXTs. 

Because KEXTs provide both modularity and dynamic loadability, they are a 
natural choice for any relatively self-contained service that requires access to kernel 
internal interfaces. Many of the components of the Core OS support this extension 
mechanism, although in different ways. 

For example, some of the new networking features involve the use of network 
kernel extensions (NKEs). The ability to dynamically add a new file system 
implementation is based on VFS KEXTs. Device drivers and device families in the 
I/O Kit are implemented using KEXTs. KEXTs make development much easier for 
developers writing drivers or those writing code to support a new volume format 
or networking protocol. KEXTs will be discussed in more detail in the chapter 
Extending the Kernel.
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3 Mach

The fundamental services and primitives of the Mac OS X kernel are based on 
Mach 3.0. Apple has modified and extended Mach to better meet Mac OS X 
functional and performance goals.

Mach 3.0 was originally conceived as a simple, extensible, communications 
microkernel. It is capable of running standalone, with other traditional operating 
system services such as I/O, file systems, and networking stacks running as 
user-mode servers. 

However, in Mac OS X, Mach is linked with other kernel components into a single 
kernel address space. This is primarily for performance; it is much faster to make a 
direct call between linked components than it is to send messages or do RPC 
between separate tasks. This modular structure results in a more robust and 
extensible system than a large, purely monolithic kernel would allow, without the 
performance penalty of a pure microkernel.

Thus in Mac OS X, Mach is not primarily a communication hub between clients 
and servers. Instead, its value consists of its abstractions, its extensibility, and its 
flexibility.   In particular, Mach provides:

� Object-based APIs with communication channels (e.g., ports) as object 
references

� Highly parallel execution, including preemptively scheduled threads and 
support for SMP

� A flexible scheduling framework, with support for real-time usage

� A complete set of IPC primitives, including messaging, RPC, synchronization, 
and notification

� Support for large virtual address spaces, shared memory regions, and memory 
objects backed by persistent store
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� Proven extensibility and portability, for example across instruction set 
architectures and in distributed environments

� Security and resource management as a fundamental principle of design; all 
resources are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstractions, which have been designed to be both 
simple and powerful. The main kernel abstractions are

� Task — The unit of resource ownership, consisting of a virtual address space, a 
port right name space, and a set of threads.

� Thread— The unit of CPU execution.

� Address space — In conjunction with memory managers, Mach implements 
the notion of a sparse virtual address space and shared memory.

� Memory object — The internal unit of memory management. Memory objects 
include named entries and regions; they are representations of 
potentially-persistent data which may be mapped into address spaces.

� Port — A secure, simplex communication channel, accessible only via send and 
receive capabilities (rights).

� IPC — Message queues, remote procedure calls (RPC), notifications, 
semaphores, and lock sets.

� Time — Clocks, timers, and waiting.

At the trap level, the interface to most Mach abstractions consists of messages sent 
to and from kernel ports representing those objects. The trap-level interfaces (such 
as mach_msg_overwrite_trap) and message formats are themselves abstracted in 
normal usage by the Mach Interface Generator (MIG). MIG is used to compile 
procedural interfaces to the message-based APIs, based on descriptions of those 
APIs.
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Tasks And Threads

Mac OS X processes and POSIX threads (PThreads) are implemented on top of 
Mach tasks and threads, respectively. A thread is Mach’s notion of the point of 
control. A task exists to provide resources for the threads it contains. This split is 
made to provide for parallelism and resource sharing.

A thread:

� Is a point of control flow in a task

� Has access to all of the elements of the containing task

� Potentially executes in parallel with other threads, even threads within the 
same task

� Has minimal state for low overhead

A task:

� Is a collection of system resources; these resources, with the exception of the 
address space, are referenced by ports. These resources may be shared with 
other tasks if rights to the ports are so distributed.

� Provides a large, potentially sparse address space, referenced by machine 
address; portions of this space may be shared through inheritance or external 
memory management.

� Contains some number of threads.

Note that a task has no life of its own; only threads execute instructions. When it is 
said that “a task Y does X”, what is really meant is that “a thread contained within 
task Y does X”.

A task is a fairly expensive entity. It exists to be a collection of resources. All of the 
threads in a task share everything. Two tasks share nothing without an explicit 
action (although the action is often simple) and some resources (such as port 
receive rights) cannot be shared between two tasks at all.
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A thread is a fairly lightweight entity. It is fairly cheap to create and has low 
overhead to operate. This is true because a thread has little state (mostly its register 
state); its owning task bears the burden of resource management. On a 
multiprocessor machine, it is possible for multiple threads in a task to execute in 
parallel. Even when parallelism is not the goal, multiple threads have an 
advantage in that each thread can use a synchronous programming style, instead 
of attempting asynchronous programming with a single thread attempting to 
provide multiple services.

A thread is the basic computational entity. A thread belongs to one and only one 
task that defines its virtual address space. To affect the structure of the address 
space, or to reference any resource other than the address space, the thread must 
execute a special trap instruction which causes the kernel to perform operations on 
behalf of the thread, or to send a message to some agent on behalf of the thread. In 
general, these traps manipulate resources associated with the task containing the 
thread. Requests can be made of the kernel to manipulate these entities: to create 
them, delete them, and affect their state.

Mach provides a flexible framework for thread scheduling policies. Early versions 
of Mac OS X support both the timesharing and fixed-priority policies. A 
timesharing thread’s priority is raised and lowered to balance its resource 
consumption against other timesharing threads. 

Fixed-priority threads execute for a certain quantum, and then are put at the end of 
the queue of threads of equal priority. Setting a fixed priority thread’s quantum to 
‘infinity’ effectively makes the thread run-till-block within its priority. High 
priority real-time threads are usually fixed priority.

Future versions of Mac OS X may have additional scheduling policies, for more 
sophisticated real-time support.

Ports, Port Rights, Port Sets, and Port Name Spaces

With the exception of the task’s virtual address space, all other Mach resources are 
accessed through a level of indirection known as a port. A port is an endpoint of a 
unidirectional communication channel between a client who requests a service and 
a server who provides the service. If a reply is to be provided to such a service 
request, a second port must be used.
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In most cases, the resource that is accessed by the port (that is, named by it) is 
referred to as an object. Most objects named by a port have a single receiver and 
(potentially) multiple senders. That is, there is exactly one receive port, and at least 
one sending port, for a typical object such as a message queue.

The service to be provided by an object is determined by the manager that receives 
the request sent to the object. It follows that the receiver for ports associated with 
kernel-provided objects is the kernel and the receiver for ports associated with 
task-provided objects is the task providing that object.

For ports that name task-provided objects, it is possible to change the receiver of 
requests for that port to be a different task, for example by passing the port to that 
task in a message. A single task may have multiple ports that refer to resources it 
supports. For that matter, any given entity can have multiple ports that represent 
it, each implying different sets of permissible operations. For example, many 
objects have a name port and a control port (sometimes called the privileged port). 
Access to the control port allows the object to be manipulated; access to the name 
port simply names the object, for example, to return information about it.

Tasks have permissions to access ports in certain ways (send, receive, send-once); 
these are called port rights.   A port can only be accessed via a right. Ports are often 
used to grant clients access to objects within Mach. Having the right to "send" to 
the object’s IPC port denotes the right to manipulate the object in prescribed ways. 
As such, port right ownership is the fundamental security mechanism within 
Mach. Having a right to an object is to have a capability to access or manipulate 
that object.

Port rights can be copied and moved between tasks via IPC. Doing so, in effect, 
passes capabilities to some object or server.

One type of object referred to by a port is a port set. As the name suggests, a port 
set is a set of port rights which can be treated as a single unit when receiving a 
message or event from any of the members of the set. Port sets permit one thread to 
wait on a number of message and event sources, for example in work loops.

Traditionally in Mach, the communication channel denoted by a port was always a 
queue of messages. However, Mac OS X supports additional types of 
communication channels, and these new types of IPC object are also represented 
by ports and port rights. See the section, Task To Task Communication (IPC), for 
more details about messages and other IPC types.
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Ports and port rights do not have system-wide names that allow arbitrary ports or 
rights to be manipulated directly. Ports can only be manipulated by a task if it has a 
port right in its port name space. A port right is specified by a port name, which is 
an integer index into a 32-bit port name space. Each task has associated with it a 
single port name space.

Tasks acquire port rights when another task explicitly inserts them into its name 
space, when they receive rights in messages, by creating objects which return a 
right to the object, and via Mach calls for certain special ports (mach_thread_self, 
mach_task_self, and mach_reply_port.)

Memory Management

As with most modern operating systems, Mach provides addressing to large, 
sparse, virtual address spaces. Runtime access is made via virtual addresses which 
may not correspond to locations in physical memory at the initial time of the 
attempted access. Mach is responsible for reconciling a requested access in virtual 
space with a location in physical memory. It does so through demand paging.

A range of a virtual address space is populated with data when a memory object is 
mapped into that range. All data in an address space is ultimately provided 
through memory objects. Mach will ask the owner of a memory object (a pager) for 
the contents of a page when establishing it in physical memory, and will return the 
possibly-modified data to the pager before reclaiming the page. Mac OS X includes 
two built-in pagers — the default pager and the vnode pager. 

The default pager handles non-persistent or anonymous memory. Anonymous 
memory is zero-initialized, and it exists only during the life of a task. The vnode 
pager maps files into memory objects. Mach exports an interface to memory objects 
to allow their contents to be contributed by user-mode tasks. This interface is 
known as the External Memory Management Interface, or EMMI.

The memory management subsystem exports virtual memory handles known as 
named memory entries. Like most kernel resources, these are denoted by ports. 
Having a named memory entry handle allows the owner to map the underlying 
virtual memory object or to pass the right to map the underlying object to others. 
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Mapping a named entry in two different tasks results in a shared memory window 
between the two tasks, thus providing a flexible method for establishing shared 
memory. 

Address ranges of virtual memory space may also be populated through direct 
allocation (using vm_allocate). The underlying virtual memory object is 
anonymous and backed by the default pager. Shared ranges of an address space 
may also be set up via inheritance. When new tasks are created, they are cloned 
from a parent. This cloning pertains to the underlying memory address space as 
well. Mapped portions of objects may be inherited as a copy, or as shared, or not at 
all, based on attributes associated with the mappings. Mach practices a form of 
delayed copy known as copy-on-write to optimize the performance of inherited 
copies on task creation.

Rather than directly copying the range, a copy-on-write optimization is 
accomplished by protected sharing. The two tasks both share the memory to be 
copied, but with read-only access. When either task attempts to modify a portion 
of the range, that portion is copied at that time. This lazy evaluation of memory 
copies is an important optimization that permits simplifications in several areas, 
notably the messaging APIs.

One other form of sharing is provided by Mach, through the export of named 
regions. A named region is a form of a named entry, but instead of being backed by 
virtual memory object, it is backed by a virtual map fragment. This fragment may 
hold mappings to numerous virtual memory objects. It is mappable into other 
virtual maps, providing a way of inheriting not only a group of virtual memory 
objects but also their existing mapping relationships. This feature offers significant 
optimization in task setup, for example when sharing a complex region of the 
address space used for shared libraries.

Task To Task Communication (IPC)

Communication between tasks is an important element of the Mach philosophy. 
Mach supports a client/server system structure in which tasks (clients) access 
services by making requests of other tasks (servers) via messages sent over a 
communication channel.
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The endpoints of these communication channels in Mach are called ports, while 
port rights denote permission to use the channel. The forms of IPC provided by 
Mach include

� Message queues

� Semaphores

� Notifications

� Lock sets

� Remote procedure calls (RPC)

The type of IPC object denoted by the port determines the operations permissible 
on that port, and how (and whether) data transfer occurs. 

The IPC facilities in Mac OS X are in a state of transition. In 
early versions of the system, not all of these IPC types may 
be implemented.

There are two fundamentally different Mach APIs for raw manipulation of ports — 
the mach_msg family, and the mach_ipc family of calls. Within reason, both families 
may be used with any IPC object; however, the mach_ipc calls are preferred in new 
code. The mach_msg calls are supported for legacy code but deprecated; they are 
stateless. The mach_ipc calls are stateful where appropriate in order to support the 
notion of a transaction.

IPC Transactions and Event Dispatching
When a thread calls mach_ipc_dispatch, it will repeatedly process events coming in 
on the registered port set. These events could be an argument block from an RPC 
object (as the results of a client’s call), a lock object being taken (as a result of some 
other thread’s releasing the lock), a notification or semaphore being posted, or a 
message coming in from a traditional message queue. 

These events are handled via callouts from mach_msg_dispatch. Some events imply 
a transaction during the lifetime of the callout, because they have state. In the case 
of a lock, the state is the ownership of the lock. When the callout returns, the lock is 
released. In the case of RPC, the state is the client’s identity, the argument block, 
and the reply port. When the callout returns, the reply is sent.
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When the callout returns, the transaction (if any) is completed, and the thread 
waits for the next event. The mach_ipc_dispatch facility is intended to support 
work loops.

Message Queues
Originally, the sole style of IPC in Mach was the message queue. Only one task can 
hold the receive right for a port denoting a message queue. This one task is allowed 
to receive (read) messages from the port queue. Multiple tasks can hold rights to 
the port that allow them to send (write) messages into the queue. 

A task communicates with another task by building a data structure that contains a 
set of data elements, and then performing a message-send operation on a port for 
which it holds send rights. At some later time, the task with receive rights to that 
port will perform a message-receive operation.

A message may consist of some or all of the following:

� Pure data

� Copies of memory ranges

� Port rights

� Kernel implicit attributes, such as the sender’s security token

The message transfer is an asynchronous operation. The message is logically 
copied into the receiving task, possibly with copy-on-write optimizations. Multiple 
threads within the receiving task can be attempting to receive messages from a 
given port, but only one thread will receive any given message.

Semaphores
Semaphore IPC objects support “wait”, “post”, and “post all” operations. These are 
counting semaphores, in that posts are saved (counted) if there are no current 
waiting threads. “Post all” wakes up all currently waiting threads. There is no data 
associated with a semaphore.
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Notifications
Like semaphores, notification objects also support the “post” and “wait” methods, 
but with the addition of a state field. The state is a fixed size, fixed format field 
which is defined when the notification object is created. Each post updates the state 
field; there is a single state, which is overwritten by each post.

Locks
A lock is a mutex. The primary interfaces to locks are transaction oriented (see the 
section on IPC transactions, above). During the transaction, the thread holds the 
lock. When it returns from the transaction, the lock is released. There is no data 
associated with the lock.

Remote Procedure Calls (RPC)
As the name implies, an RPC object is designed to facilitate and optimize remote 
procedure calls. The primary interfaces to RPC objects are transaction oriented (see 
IPC Transactions and Event Dispatching, above.)

 When an RPC object is created, a set of argument block formats is defined. When 
an RPC call (a send on the object) is made by a client, it causes a message in one of 
the pre-defined formats to be created and queued on the object, then eventually 
passed to the server (the receiver). When the server returns from the transaction, 
the reply is returned to the sender. Mach tries to optimize the transaction by 
executing the server using the client’s resources; this is called thread migration.

Time Management

The traditional abstraction of time in Mach is the clock, which provides a set of 
asynchronous alarm services based on mach_timespec_t. There are one or more 
clock objects, each defining a monotonically increasing time value expressed in 
nanoseconds. The real-time clock is built in, and is the most important, but there 
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may be other clocks for other notions of time in the system. Clocks support 
operations to get the current time, sleep for a given period, set an alarm (a 
notification which is sent at a given time), and so forth. 

The mach_timespec_t APIs are deprecated in Mac OS X. The newer and preferred 
APIs are based on timer objects, which in turn use AbsoluteTime as the basic data 
type. AbsoluteTime is a machine-dependent type, typically based on the 
platform-native time base. Routines are provided to convert AbsoluteTime to and 
from other data types, such as nanoseconds. Timer objects support asynchronous, 
drift-free notification, cancellation, and premature alarms. They are more efficient 
and permit higher resolution than clocks.

As with several other Mach services, time management is in 
a state of transition in Mac OS X. Early versions of the 
system may not implement timer objects.
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The BSD portion of the Mac OS X kernel is derived from FreeBSD, a version of 
4.4BSD that offers advanced networking, performance, security and compatibility 
features. Specifically, the BSD layer is based on the 4.4BSD-Lite2 release from 
Computer Systems Research Group (CSRG) at the University of California at 
Berkeley. BSD provides many advanced features, including

� Preemptive multitasking with dynamic priority adjustment—Smooth and fair 
sharing of the computer between applications and users is ensured, even under 
the heaviest of loads. 

� Multiuser access—Many people can use a Mac OS X system simultaneously for 
a variety of things. This means, for example, that system peripherals such as 
printers and disk drives are properly shared between all users on the system or 
the network and that individual resource limits can be placed on users or groups 
of users, protecting critical system resources from over-use. 

� Strong TCP/IP networking with support for industry standards such as SLIP, 
PPP, NFS, DHCP, and NIS—Mac OS X can inter-operate easily with other 
systems as well as act as an enterprise server, providing vital functions such as 
NFS (remote file access) and email services, or Internet services such as http, ftp, 
routing, and firewall (security) services.

� Memory protection — Applications cannot interfere with each other. One 
application crashing will not affect others in any way.

� Virtual memory and dynamic memory allocation—Applications with large 
appetites for memory are satisfied while still maintaining interactive response to 
users. With Mac OS X's virtual memory system, each application has access to 
its own 4 GB memory address space; this should satisfy even the most 
memory-hungry applications.
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� Support for kernel threads, based on Mach threads—User-level threading 
packages are implemented on top of kernel threads. Each kernel thread is an 
independently scheduled entity. When a thread from a user process blocks in a 
system call, other threads from the same process can continue to execute on that 
or other processors. By default, a process in the conventional sense has one 
thread, the main thread. A user process can use the POSIX thread API to create 
other user threads.

� SMP support—Support is included for machines with multiple CPUs.

� Source code—Developers gain the greatest degree of control over the BSD 
programming environment because source is included.

� Many of the POSIX APIs

BSD Facilities

The facilities which are available to a user process are logically divided into two 
parts: kernel facilities directly implemented by code running in the operating 
system, and system facilities implemented either by the system, or in cooperation 
with a server process.

The facilities implemented in the kernel define the virtual machine in which each 
process runs. Like many real machines, this virtual machine has memory 
management, an interrupt facility, timers, and counters.

The virtual machine also allows access to files and other objects through a set of 
descriptors. Each descriptor resembles a device controller and supports a set of 
operations. Like devices on real machines, some of which are internal to the 
machine and some of which are external, parts of the descriptor machinery are built 
into the operating system, while other parts are often implemented in server 
processes.
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The kernel facilities available from the BSD component include

� Processes and protection —

� Host and process identifiers

� Process creation and termination

� User and group IDs

� Process groups

� Memory management —

� Text, Data, Stack, and Dynamic Shared Libraries

� Mapping pages

� Page protection control

� Synchronization primitives

� Signals —

� Signal types

� Signal handlers

� Sending signals

� Timing and statistics —

� Real time

� Interval time

� Descriptors —

� Files

� Pipes

� Sockets

� POSIX shared memory

� POSIX semaphores
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� Resource controls —

� Process priorities

� Resource utilization and resource limits

� Quotas

� System operation support —

� Bootstrap operations

� Shutdown operations

� Accounting

BSD system facilities (facilities that may interact with user space) include

� Generic input/output operations such as read and write, non-blocking and 
asynchronous operations

� File system operations

� Interprocess communication

� Handling of terminals and other devices

� Process control

� Networking operations

Differences between Mac OS X and BSD

Although the BSD portion of Mac OS X is primarily derived from FreeBSD, some 
changes have been made. 

� The sbrk() system call for memory management has not been implemented in 
Mac OS X.

� The Mac OS X runtime model supports dynamic shared libraries. This model 
uses Mach-O and PEF binary file formats, as well as dyld (dynamic link editor) 
and CFM (Code Fragment Manager) that use these formats respectively. The 
kernel supports execve() of Mach-O binaries. Mapping and management of 
Mach-O dynamic shared libraries, as well as launching of PEF-based 
applications, are performed by user-space code.
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� Mac OS X does not support memory mapped devices through the mmap() API.

� The swapon() call is not supported; macx_swapon() is the equivalent call from the 
Mach pager.

� The Unified Buffer Cache implementation in Mac OS X differs from that found 
in FreeBSD.

In addition, several new features have been added that are specific to the Mac OS X 
(Darwin) implementation of BSD. These features are not found in FreeBSD.

� Enhancements to file system buffer cache and file I/O clustering

� Adaptive and speculative read ahead

� User process controlled read ahead

� Time aging of the file system buffer cache

� Enhancements to file system support

� Implementation of Apple extensions for ISO-9660 file systems

� Multi-threaded asynchronous I/O for NFS

� Addition of system calls to support semantics of Mac OS Extended file 
systems

� Additions to naming conventions for pathnames, as required for accessing 
multiple forks in Mac OS Extended file systems

For further reading

The BSD component of the Mac OS X kernel is complex. A complete description is 
beyond the scope of this document. However, many excellent references exist for 
this component. For further information, developers interested in BSD should be 
sure to refer to the Bibliography.

Although the BSD layer of Mac OS X is derived from 4.4BSD, keep in mind that it is 
not identical to 4.4BSD. Some functionality of 4.4 BSD has not been included in Mac 
OS X. Some new functionality has been added. The cited reference materials are 
recommended for additional reading. However, they should not be presumed as 
forming a definitive description of Mac OS X.
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Developers who are already familiar with writing device drivers for Mac OS 8 and 
9 or for BSD will discover that writing drivers for Mac OS X requires some new 
ways of thinking. In creating Mac OS X, Apple has completely redesigned the 
Macintosh I/O architecture, providing a framework for simplified driver 
development, supporting many categories of devices, This framework is called the 
I/O Kit.

The I/O Kit uses an object-oriented programming model, implemented in a 
restricted subset of C++. Use of object-oriented frameworks can dramatically 
increase developer productivity. Once you are familiar with the new model, you 
should find that it makes writing device drivers easier and more efficient than ever 
before.

From a programming perspective, the I/O Kit provides an abstract view of the 
system hardware to the upper layers of Mac OS X. By starting with properly 
designed base classes, a developer gains a head start in writing a new driver; with 
much of the driver code already written, the developer needs only to fill in the 
specific code that makes their driver different.

Another part of the philosophy of the I/O Kit is to make the design completely 
open. Rather than hiding APIs in an attempt to protect developers from themselves, 
all of the I/O Kit source is available as part of Darwin. Developers can use the 
source code as an aid to designing (and debugging) new drivers.

Instead of hiding the interfaces, Apple’s designers have chosen to lead by example. 
Sample code and classes show the recommended (easy) way to write a driver. 
However, developers are not prevented from doing things the hard way (or the 
wrong way!). Instead, attention has been concentrated on making the “best” ways 
easy to follow.
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Redesigning the I/O Model

Many developers may ask why Apple chose to redesign the I/O model. At first 
glance, it might seem that re-using the model from Mac OS 9 or FreeBSD would 
have been an easier choice. There are several reasons for the decision, however. 

Neither the Mac OS 8 and 9 driver model nor the FreeBSD model offered a sufficient 
feature set to meet the needs of Mac OS X. The underlying operating system 
technology of Mac OS X is very different from that of Mac OS 8 and 9. The Mac OS 
X kernel is significantly more advanced than the previous Mac OS system 
architecture; Mac OS X needs to handle memory protection, preemption, 
multi-processing, and other features not present in previous versions of Mac OS. 
Although FreeBSD is capable of handling these features, the BSD model did not 
offer the automatic configuration, stacking, power management, or dynamic device 
loading features required in a modern, consumer-oriented operating system. 

By redesigning the I/O architecture, Apple’s engineers can take best advantage of 
the operating system features in Mac OS X. For example, virtual memory (VM) is 
not a fundamental part of the operating system in Mac OS 8 and 9. Thus, every 
driver writer must know about (and write for) VM.This has presented certain 
complications for developers. In contrast, Mac OS X has simplified driver 
interaction with VM. VM capability is inherent in the Mac OS X operating system 
and cannot be turned off by the user. Thus, VM capabilities can be abstracted into 
the I/O Kit and the code for handling VM need not be written for every driver.

Mac OS X offers developers an unprecedented opportunity to take advantage of 
hardware complexity without the requirement of encoding software complexity 
into each new device driver. Under Mac OS 9, for example, all software 
development kits (SDKs) were independent of each other, duplicating functionality 
between them. In Mac OS X, the I/O Kit is delivered as part of the single kernel 
development kit (KDK); all portions of the KDK rely on common underpinnings.
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I/O Kit Architecture

The I/O Kit provides a model of system hardware in an object-oriented framework. 
Each type of service or device is represented by a C++ class; each discrete service or 
device is represented by an instance (object) of that class.

The major conceptual elements of the I/O Kit architecture are families, nubs, and 
drivers. A family defines a collection of software abstractions that are common to 
all devices of a particular category (for example, PCI, storage, USB). These 
abstractions are presented as C++ classes implemented in subclasses as objects, 
specifically, nubs and drivers.

Families
Families are implemented in C code and C++ classes. Families may include headers, 
libraries, sample code, test harnesses, and documentation. If it seems more familiar, 
however, a family can simply be thought of as a library. 

Families provide services for many different categories of devices. For example, 
there are protocol families (SCSI, USB, Firewire...), storage families (disk), network 
families, and families to describe human interface devices (mouse, keyboard, joy 
stick). When devices have features in common, the software that describes those 
features will most likely be found in a family.

Families define and implement the abstractions that are common to all devices of a 
particular category. They provide the APIs, generic support code, and at least one 
example driver (in the documentation). Because the default implementation is 
provided by the family, there is less code for a developer to write.

For example, all SCSI controllers have certain things they must do, such as scanning 
the SCSI bus. The SCSI family defines and implements the functionality that is 
common to SCSI devices. Because this functionality has been included in the SCSI 
family, a developer does not need to include scanning code in each new SCSI 
controller driver.
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Instead, the developer can concentrate on device-specific details that make this 
driver different from other SCSI drivers. Common abstractions are defined and 
implemented by the family, allowing all drivers in a family to share similar features 
easily. 

Families are dynamically loadable; they are loaded when needed and unloaded 
when no longer needed. Although some common families may be pre-loaded at 
system startup, all families should be considered to be dynamically loadable (and, 
therefore, potentially unloaded!).

Nubs
A nub is an I/O Kit object that represents a detected, controllable entity; that is, a 
nub represents a device or logical service. For example, a nub may represent a bus, 
a disk, a disk partition, a graphics adaptor, a keyboard, or any number of similar 
entities.

A nub is loaded as part of the family that instantiates it. Each nub provides access 
to the device or service that it represents, and provides services such as matching, 
arbitration, and power management. 

Drivers
Nubs provide matching services, matching devices to drivers. A driver is an I/O Kit 
object that manages a specific piece of hardware, implementing the appropriate I/O 
Kit abstractions for controlling that hardware. Each nub provides a bridge between 
two drivers (and, by extension, between two families). It is most common that a 
driver publishes one nub for each individual device or service it controls; however, 
it is also possible for a driver that vends only a single device or service to act as its 
own nub. 

When a driver is loaded, its required families are also loaded to provide necessary, 
common functionality. The request to load a driver causes all of its dependent 
requirements (and their requirements) to be loaded first. After all requirements are 
met, the requested driver is loaded as well. 

Note that families are loaded upon demand of the driver, not the other way around. 
Occasionally, a family may already be loaded when a driver demands it; however, 
this should never be assumed. To ensure that all requirements are met, each device 
driver should list all of its requirements in its property list.
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Each driver is in a client-provider relationship, wherein every driver must know 
about both the family it inherits from and the family it connects to. A SCSI controller 
driver, for example, must be able to communicate with both the SCSI family and the 
PCI family (as a client of PCI and provider of SCSI). A SCSI disk driver 
communicates with both the SCSI and Storage families. 

Example
The figure below illustrates the I/O Kit architecture, using several example drivers 
and their corresponding families and nubs. Note that many different family and 
driver combinations are possible; this diagram shows only one possibility. Arrows 
represent order of creation or discovery.

Figure 5-1 I/O Architecture Example: Families, Drivers, and Nubs

In this example, a connection is made that spans from a disk back to the PCI bus. 
The connection is made in several steps.

1. The PCI Bus driver finds a PCI device and announces its presence by creating a 
nub (IOPCIDevice). The nub’s class is defined by the PCI family.

2. The nub has the job of identifying (matching) the correct driver and requesting 
that the driver be loaded. At the end of this matching process, a SCSI controller 
driver is found and loaded. Loading the controller driver causes all required 
families to be loaded as well. In this case, the SCSI family is loaded; the PCI 
family (also required) is already present. The SCSI controller driver is given a 
reference to the nub.
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3. The SCSI controller driver scans the bus for SCSI devices. Upon finding a device, 
it announces the presence of the device by creating a nub (IOSCSIDevice). This 
nub is defined by the SCSI family.

4. The nub has the job of identifying (matching) the correct driver and requesting 
that the driver be loaded. At the end of this matching process, a disk driver is 
found and loaded. Loading the disk driver causes all required families to be 
loaded as well. In this case, the storage family is loaded; the SCSI family (also 
required) is already present. The disk driver is given a reference to the nub.

Scope

In contrast with “traditional” I/O models, the reusable code model provided by the 
I/O Kit can decrease the developer’s work substantially. When porting drivers 
from Mac OS 9, for example, the Mac OS X counterparts have been up to 75% 
smaller.

Not all drivers benefit to this degree. Some things are difficult to abstract. The I/O 
Kit attempts to represent, in software, the same hierarchy that exists in hardware. 
When that hierarchy is difficult to represent (for example, if layering violations 
occur), then the I/O Kit abstractions provide less help for writing drivers.

In addition, all drivers exist to drive hardware; all hardware is different. Even with 
the reusable model provided by the I/O Kit, developers will need to be aware of the 
“quirks” of the hardware. The code to support those quirks will still need to be 
unique from driver to driver.

In general, all hardware support is provided directly by I/O Kit entities. One 
exception to this rule is imaging devices such as printers, scanners, and digital 
cameras (although these do make some use of I/O Kit functionality). Specifically, 
although communication with these devices is handled by the I/O Kit (e.g., under 
the Firewire or USB families), support for particular device characteristics is 
handled by user-space code (see Presenting kernel APIs in user space for further 
discussion). Developers who need to support imaging devices should employ the 
appropriate imaging SDK. 
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It is also possible to write a custom driver for a device that is not abstracted by any 
I/O Kit family. In doing so, however, the developer no longer benefits from the 
services a family provides. In this case, the developer is responsible for defining an 
abstraction for the device, and for implementing this abstraction, as well as for 
writing any client libraries that are necessary to allow clients to make use of the 
device. For most hardware devices, writing an I/O Kit driver that builds on an I/O 
Kit family is the safest and easiest approach.

In designing the I/O Kit, one goal has been to make developers’ lives easier. 
Unfortunately, it is not possible to make all developers’ lives uniformly easy. 
Therefore, a second goal of the I/O Kit design is to meet the needs of the majority 
of developers, without getting in the way of the minority that need lower level 
access to the hardware. 

Although most developers should be able to take advantage of an I/O Kit family, 
there will always be some who cannot. Some driver writers will only need to 
override a few things; others (rarely) will be unable to find any I/O Kit abstraction 
that fits their device. For this reason, the source code is always available. Developers 
who need to do so will be able to replace functionality and modify the classes 
themselves.

Presenting kernel APIs in user space

Mac OS X draws a distinction between kernel and user space. Applications in user 
space cannot interface directly with kernel-space APIs.

Some family services are never exported to user space; these services are available 
only inside the kernel. One such example is the PCI family. For stability and security 
reasons, direct access to PCI resources from user space is forbidden.

In other cases, however, family services may need to be presented in user space. For 
example, a control panel may need to interact with system software to set monitor 
depth or sound volume. As another example, a disk backup program may need to 
act as the “driver” for a tape drive. Other examples of user applications that may 
need to interact with nubs in kernel space might include scanners, printers, digital 
cameras, and so forth.
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Many types of I/O Kit devices present themselves across the user-kernel address 
space boundary by by means of a user client. For example, SCSI and USB can be 
requested to create a “split object” user client for any nub they “own”; a user client 
has a presence in both user and kernel space. The user client handles negotiation, 
protection, authentication, and other tasks in user space as if it were an in-kernel 
driver. 

An application can communicate with a device by acquiring the device nub through 
an appropriate user client. The user client attaches to the (kernel-space) nub on 
behalf of the (user-space) application.

A user client is implemented in two parts. The kernel portion is usually part of an 
appropriate family. The user portion is linked into the application as a library or 
CFPlugin. A user client looks like a library when “viewed” from user space. From 
kernel space, it looks like a driver. 

The figure below illustrates one example of a user client, in this case, a USB printer 
application (OHCI is the standard USB Controller interface). A user client permits 
the communication of raw USB commands across the user-kernel address space 
boundary.

Note that many different family and driver combinations are possible; this diagram 
shows only one possibility. Arrows represent order of creation or discovery. See 
I/O Kit Architecture for a description of families, drivers, and nubs, as well as an 
explanation of their connection path.

Figure 5-2 User-space applications and split client drivers
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Many families already provide the necessary functionality for creating user clients. 
For custom drivers that do not use I/O Kit families, however, the developer will 
need to write additional code. Any code to communicate between user space and 
kernel space must take advantage of one or more of the following facilities available 
in Mac OS X:

� BSD system calls

� Mach IPC

� Mach shared memory

The I/O Kit mostly uses Mach IPC and Mach shared memory. In contrast, the 
networking and file system components of Mac OS X primarily use BSD system 
calls. 

BSD Media Shim
The BSD media shim is an example of another way in which kernel APIs are 
exported into user space. The BSD disk shim is implemented entirely in kernel code. 
It provides a connection between a disk driver and BSD, by way of a nub (IOMedia) 
created by the disk driver. Although the BSD disk shim is included in the storage 
family, it does not inherit directly from the storage family.

 The BSD media shim uses BSD system calls to provide user-space applications with 
access to disks by way of BSD-style device nodes (in the /dev directory). These 
device nodes are owned and managed by the device file system (devfs), a BSD 
analogue to an I/O Kit user client. The device file system uses a file system model 
to represent devices rather than files. 

The figure below shows the BSD media shim providing a connection for a SCSI disk. 
Note that many different family and driver combinations are possible; this diagram 
shows only one possibility. Arrows represent order of creation or discovery. See 
I/O Kit Architecture for a description of families, drivers, and nubs, as well as an 
explanation of their connection path.
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Figure 5-3 The BSD Media Shim provides user-space access to disks
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6 Networking and Network Kernel 
Extensions

Network kernel extensions (NKEs) represent a specific case of a Mac OS X kernel 
extension. NKEs provide a way to extend and modify the networking infrastructure 
of Mac OS X dynamically, without recompiling or relinking the kernel. The effect is 
immediate and does not require rebooting the system.

Much of the content of this chapter has been excerpted from chapter 1 of Inside Mac 
OS X: Network Kernel Extensions. For a further (and more in-depth) reference to this 
topic, you should refer to that book.

NKEs can be used to 

� monitor network traffic 

� modify network traffic 

� receive notification of asynchronous events from the driver layer

In the last case, such events are received by the data link and network layers. 
Examples of these events include power management events and interface status 
changes. See Figure 6-14.4 BSD network architecture.

Specifically, NKEs allow you to

� create protocol stacks that can be loaded and unloaded dynamically and 
configured automatically

� create modules that can be loaded and unloaded dynamically at specific 
positions in the network hierarchy.

The Kernel Extension Manager dynamically adds NKEs to the running Mac OS X 
kernel inside the kernel’s address space. An installed and enabled NKE is invoked 
automatically, depending on its position in the sequence of protocol components, to 
process an incoming or outgoing packet.
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As KEXTs, all NKEs provide initialization and termination routines that the Kernel 
Extension Manager invokes when it loads or unloads the NKE. The initialization 
routine handles any operations that are needed to complete the incorporation of the 
NKEs into the kernel, such as updating protosw and domain structures. Similarly, the 
termination routine must remove references to the NKE from these structures to 
unload itself successfully. NKEs must provide a mechanism, such as a reference 
count, to ensure that the NKE can terminate without leaving dangling pointers.

Review of 4.4BSD Network Architecture

Mac OS X is based on the 4.4BSD operating system. The following structures control 
the 4.4BSD network architecture:

� socket structure — used to keep track of network information on a per-file 
descriptor basis. The socket structure is referenced by file descriptors from user 
space.

� domain structure — describes protocol families.

� protosw structure — describes protocol handlers. (A protocol handler is the 
implementation of a particular protocol in a protocol family.)

� ifnet structure — describes a network interface

None of these structures is used uniformly throughout the 4.4BSD networking 
infrastructure. Instead, each structure is used at a specific level, as shown below. 
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Figure 6-1 4.4 BSD network architecture

Above the network layer, packets are isolated on a per-user (per-file descriptor) 
basis. That is, packets are isolated based upon their ownership. Below the network 
layer, packets are isolated based on which device they go to (or originate from). The 
network layer provides a transition in how packets are viewed and processed. In the 
protocol stack (network layer) and the data link layer, the point of view is 
per-packet. Above these, in the socket structure, the point of view is the stream.
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� protocol handler NKEs — these process packets for a particular protocol within 
the context of a protocol family. A protosw structure describes a protocol handler 
and provides the mechanism by which the handler is invoked to process 
incoming and outgoing packets and for invoking various control functions.

� data link NKEs — inserted below the protocol layer and above the network 
interface layer. This type of NKE can passively observe traffic as it flows in and 
out of the system (for example, a sniffer) or can modify the traffic (for example, 
encrypting or performing address translation).

The following figure summarizes the NKE architecture.

Figure 6-2 NKE architecture
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NKE Modes
Socket NKEs operate in one of two modes: programmatic or global. Data link NKEs 
operate only in global mode. 

A programmatic NKE is a socket NKE that is enabled under program control, using 
socket options, for a specific socket. That is, a program is responsible for enabling 
these on a specific socket. Programmatic NKEs must be specified by a name (a 32-bit 
integer handle); these should be registered with Apple. NKE handles use the same 
name space as Type and Creator handles. 

In contrast, global socket NKEs as well as data link NKEs are automatically enabled 
when they are loaded and initialized. The developer (or application) need not know 
the names of the global NKEs that are enabled.

Modifications to 4.4BSD Networking Architecture

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were 
modified as follows:

� The protosw array referenced by the domain structure is now a linked list, 
thereby removing the array’s upper bound. The new max_protohdr member 
defines the maximum protocol header size for the domain. The new dom_refs 
member is a reference count that is incremented when a new socket for this 
address family is created and is decremented when a socket for this address 
family is closed.

� The protosw structure is no longer an array. The pr_next member has been added 
to link the structures together. This change has implications for protox usage for 
AF_INET and AF_ISO input packet processing. The pr_flags member is an 
unsigned integer instead of a short. NKE hooks have been added to link NKE 
descriptors together.
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7 File Systems and VFS Stacks

Mac OS X provides “out-of-the-box” support for several different file systems. 
These include Mac OS Extended Format (HFS+), the BSD standard file system 
format (UFS), NFS (an industry standard for networked file systems) and ISO 9660 
(used for CD-ROM). 

Support is also included for reading the older, Mac OS Standard Format (HFS) 
file-system type; however, you should not plan to format new volumes using Mac 
OS Standard Format. Mac OS X cannot boot from these file systems, nor does the 
Mac OS Standard format provide some of the information required by Mac OS X.

Mac OS X boots and “roots” from Mac OS Extended Format. That is, Mac OS X can 
mount a Mac OS Extended Format volume and use it as the primary or root file 
system. The Extended Format file system type provides many of the same 
characteristics as Mac OS Standard Format but adds additional support for modern 
features such as file permissions, longer file names, Unicode, both hard and 
symbolic links, and larger disk sizes.

Other file systems can be mounted, allowing users to gain access to additional 
volume formats and features. For example, UFS provides case sensitivity and other 
characteristics that may be expected by BSD commands. In contrast, Mac OS 
Extended Format is case-insensitive (but case-preserving).

NFS provides access to network servers as if they were locally mounted file 
systems. The Carbon application environment mimics many expected behaviors of 
Mac OS Extended Format on top of both UFS and NFS. These include such 
characteristics as Finder Info, file ID access, and aliases.

By using the Mac OS X Virtual File System (VFS) capability and writing kernel 
extensions, developers can add support for other file systems. Examples of file 
systems that are not currently supported in Mac OS X but that third party 
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developers may wish to add to the system include the Andrew file system (AFS) 
and the Windows NT File system (NTFS). If you want to support a new volume 
format or networking protocol, you’ll need to write a file system kernel extension.

Working with the File System

In Mac OS X, the vnode structure provides the internal representation of a file or 
directory (folder). There is a unique vnode allocated for each active file or folder, 
including the root.

Within a file system, operations on specific files and directories are implemented via 
vnodes and VOP (vnode operation) calls. VOP calls are used for operations on 
individual files or directories (such as open, close, read, or write). Examples include 
VOP_OPEN to open a file and VOP_READ to read file contents. In contrast, file 
system-wide operations are implemented using VFS calls. VFS calls are primarily 
used for operations on entire file systems; examples include VFS_MOUNT and 
VFS_UNMOUNT to mount or unmount a file system, respectively. File system writers 
need to provide stubs for each of these sets of calls.

Supporting a new volume format requires implementing a new file system type. 
However, it is not always necessary to implement a new file system type in order to 
change the way in which a user interacts with files. VFS stacks allow developers to 
create and layer new capabilities onto an existing file system type.

VFS stacks provide filters between the user and the underlying file system. As 
implied by the diagram, VFS stacks can run on top of any type of file system. If your 
application does not need to support a volume format or networking protocol, but 
does need to intercept data going into or out of the file system, implementing a VFS 
stack may be the appropriate choice.

For example, VFS stacks may be used in the following sorts of application areas:

� virus checking — automatically check a file for viruses before reading its data

� compression — perform compression or decompression “on-the-fly” when 
opening (reading) and writing files

� encryption — automatically encrypt a file as it is written, then decrypt it (with a 
password) when it is opened or read
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The following figure illustrates the file system architecture with several example 
VFS stacks and file systems shown.

Figure 7-1 File systems and VFS stacks

When writing a VFS stack, the developer must create a stub for each vnode 
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Mach

File system calls

VFS

encryption stack

compression stack

HFS+ NFS ...UFS

BSD



58 A Politically Correct Example
Preliminary. © Apple Computer, Inc. 7/10/00 

C H A P T E R  7

File Systems and VFS Stacks

A Politically Correct Example

The “Politically Correct File System” is an example of a VFS stack. In this example, 
all calls are ignored (passed to the underlying layer) except for those that create, 
read, or write a file (or folder). 

Upon receiving a request to create a file or folder, the Politically Correct (PC) stack 
intercepts the call before it can be executed by the underlying file system. The PC 
version of the create call checks the requested file name against a table of names. If 
the name is deemed “politically incorrect”, for example if the user chooses to name 
a file “vulgarity”, the PC create call will choose a more pleasing name, for example, 
“politeness”. The new name will be passed to the create routine of the underlying 
file system.

Similarly, when a user opens a file to read or write it, such as with a text editor, the 
PC read and write routines first examine the data buffer, possibly substituting 
preferred words and phrases for their undesirable counterparts. After the 
substitutions are made, the buffer is handed to the underlying routine, which 
displays the data or writes it to disk. 

Thus, if a user attempted to save a file containing a sentence such as

The beleaguered computer company’s woes continue, despite rising stock prices.

the PC write routine might intercept and filter this sentence to a more desirable 
version

The aspiring computer company’s joys continue, due to rising stock prices.
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8 Extending the Kernel

As discussed in chapter 2, Kernel Architecture, Mac OS X provides a kernel 
extension mechanism as a means of allowing dynamic loading of code into the 
kernel, without the need to recompile or relink. Because these kernel extensions 
(KEXTs) provide both modularity and dynamic loadability, they are a natural 
choice for any relatively self-contained service that requires access to internal kernel 
interfaces. 

Because KEXTs run in supervisor mode in the kernel’s address space, they are also 
harder to write and debug than user-level modules, and must conform to strict 
guidelines. Further, kernel resources are wired (permanently resident in memory) 
and are thus more costly to use than resources in a user-space task of equivalent 
functionality.

In addition, although memory protection keeps applications from crashing the 
system, no such safeguards are in place inside the kernel. A badly behaved kernel 
extension in Mac OS X can actually cause more trouble than a badly behaved 
application or extension could in Mac OS 8 or 9.

Bugs in KEXTs can have far more severe consequences than bugs in user-level code. 
For example, a memory access error in a user application will, at worst, cause that 
application to crash. In contrast, a memory access error in a KEXT will cause a 
system panic, crashing the operating system.

Finally, for security reasons, some customers may not permit or will restrict use of 
third-party KEXTs. As a result, use of KEXTs is strongly discouraged in situations 
where user-level solutions are feasible. Mac OS X guarantees that user threads are 
just as efficient as kernel threads, so efficiency should not be an issue. Unless your 
application requires low-level access to kernel interfaces or the data stream, you 
should use a higher level of abstraction when developing code for Mac OS X. 
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When you are trying to determine if a piece of code should be a KEXT, the default 
answer is generally no. In particular, if your code was a system extension in Mac OS 
8 or 9, that does not imply that it must necessarily be a kernel extension in Mac OS 
X. There are only a few good reasons for a developer to write a kernel extension:

� Your code needs to take a primary interrupt, that is, something in the hardware 
needs to interrupt the CPU.

� The primary client of your code is inside the kernel, for example, a block device 
whose primary client is a file system.

� A sufficiently large number of running applications require a resource that your 
code provides; for example, you have written a file system stack.

� Your code needs to multiplex between multiple client applications that require 
high speed, excellent synchronization, or low latency.

If your code does not meet any of the above criteria, you should consider 
developing it as a library or a user-level daemon, or using one of the user-level 
plug-in architectures (such as QuickTime components or the Core Graphics 
Framework) instead of writing a kernel extension.

For developers writing device drivers or code to support a new volume format or 
networking protocol, however, KEXTs may be the only feasible solution. 
Fortunately, while KEXTs may be more difficult to write than user-space code, 
several tools and procedures are available to enhance the development and 
debugging process. See the section on Debugging for more information.

This chapter provides a conceptual overview of KEXTs and how to create them. If 
you are interested in building a simple KEXT, see the Apple tutorials referenced in 
the Bibliography. These provide step by step instructions for creating a simple, 
generic KEXT or a basic I/O Kit driver.
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Implementation

KEXTs are implemented as bundles, folders that the Finder treats as single files. See 
the Bundles chapter in Inside Mac OS X: System Overview for a discussion of 
bundles.The KEXT bundle can contain the following:

� Information property list — a text file that describes the contents, settings, and 
requirements of the KEXT. This file is required. A KEXT bundle need contain 
nothing more than this file, although most KEXTs contain one or more kernel 
modules as well. See the Software Configuration chapter in Inside Mac OS X: 
System Overview for further information about property lists.

� Kernel modules — a file (or files) in Mach-O format, containing the actual 
binary code used by the KEXT. A kernel module (or KMOD) represents the 
minimum unit of code that can be loaded into the kernel. A KEXT can contain 
zero or more KMODs. If no KMODs are included, the information property list 
file must contain a reference to at least one module in another KEXT and change 
its default settings. 

� Resources — for example, icons or localization dictionaries. Resources are 
optional; they may be useful for KEXTs that need to display a dialog box or 
menu. At present, no resources are explicitly defined for use with KEXTs.

Dependencies

Any KMOD can declare that it is dependent upon any other KMOD. The developer 
lists these dependencies in the “Requires” field of the module’s property list file.

Before a KMOD is loaded, all of its requirements will be checked. Those required 
modules (and their requirements) will be loaded first, iterating back through the 
lists until there are no more required modules to load. Only after all requirements 
are met, will the requested KMOD be loaded as well. 
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For example, device drivers (a type of KEXT) are dependent upon (require) certain 
families (another type of KEXT). When a driver is loaded, its required families are 
also loaded to provide necessary, common functionality. To ensure that all 
requirements are met, each device driver should list all of its requirements (families 
and other drivers) in its property list. See chapter 5, Device Drivers and the I/O Kit, 
for an explanation of drivers and families. 

It is important to list all dependencies for each KMOD. If your KEXT fails to do so, 
your KMOD may not load due to unrecognized symbols, thus rendering the KEXT 
useless. Dependencies in KMODs can be considered analogous to required header 
files or libraries in code development; in fact, the Kernel Extension Manager uses 
the standard linker to resolve KMOD requirements.

Building and Testing your KEXT

After creating the necessary property list and C (or C++) source files, you use 
Project Builder to build your KEXT as well. Any errors in the source code will be 
brought to your attention during the build and you will be given the chance to edit 
your source files and try again.

To test your KEXT, however, you will need to leave Project Builder and work in the 
Terminal application (or in console mode). In console mode, all system messages 
are written directly to your screen, as well as to a log file (/var/log/system.log). If 
you work in the Terminal application, you’ll need to view system messages in the 
log file.You’ll also need to log in to the root account (or use the su command), since 
only the root account can load kernel extensions. 

When testing your KEXT, you can load and unload it manually, as well as check the 
load status. You can use the kextload command to load any KEXT. This command 
handles matching for I/O Kit drivers, then calls kmodload. If you are not working 
with the I/O Kit you can run kmodload directly. Manual pages for these, as well as 
the kmodunload and kmodstat commands, are included in Mac OS X.

Note that these commands are only useful when developing a KEXT. Eventually, 
after it has been tested and debugged, you’ll install your KEXT in one of the 
standard places (see Installed KEXTs for details). Then, it will be loaded and 
unloaded automatically at system startup and shutdown or whenever it is needed 
(such as when a new device is detected).
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Debugging
KEXT debugging can be complicated. Before you can debug a KEXT, you must first 
enable kernel debugging, as Mac OS X is not normally configured to permit 
debugging the kernel. Only the root account can enable kernel debugging, and 
you’ll need to reboot Mac OS X for the changes to take effect.

Kernel debugging is performed using two Mac OS X machines, called the 
“development” and “target” machines. These machines must be connected over a 
reliable network connection on the same subnet (or within a single local network). 
Specifically, there must not be any intervening IP routers or other devices which 
could make hardware-based Ethernet addressing impossible.

The KEXT is registered (and the KMODs loaded and run) on the target machine. 
The debugger is launched and run on the development machine. You can also 
rebuild your KEXT on the development machine, after you fix any errors you find.

Debugging must be performed in this fashion because you must temporarily halt 
the kernel on the target machine in order to use the debugger. When you halt the 
kernel, all other processes on that machine stop. However, a debugger running 
remotely can continue to run and can continue to examine (or modify) the kernel on 
the target machine.

Note that bugs in KEXTs may cause the target kernel to freeze or panic. When this 
happens, you may not be able to continue debugging, even over a remote 
connection; you will have to reboot the target and start over, setting a breakpoint 
just before the code where the KEXT crashed and working very carefully up to the 
crash point.

KEXTs are debugged using GDB, a source-level debugger with a command-line 
interface. You will need to work in the Terminal application to run GDB. For 
detailed information about using GDB, see the documentation included with 
Mac OS X. You can also use the help command from within GDB.

Because KEXT debugging happens at such a low level, you won’t be able to take 
advantage of all features of GDB. For example:

� You can’t use GDB to call a function or method in a KEXT.

� You can’t use GDB to debug interrupt routines.
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Use care that you do not halt the kernel for too long when you are debugging (for 
example, when you set breakpoints). In a short time, internal inconsistencies can 
appear that will cause the target kernel to panic or freeze, forcing you to reboot the 
target machine. 

Installed KEXTs

The Kernel Extension Manager (KEXT Manager) is responsible for loading and 
unloading all installed KMODs (commands such as kextload are only used during 
development). Installed KMODs are dynamically added to the running Mac OS X 
kernel as part of the kernel’s address space. An installed and enabled KMOD is 
invoked as needed.

Note that KEXTs are only wrappers (bundles) around a 
property list, KMODs (or references to KMODs), and 
optional resources. The KEXT describes what is to be loaded; 
it is the KMODs that are actually loaded. 

The Kernel Extension Manager must be able to find the KEXTs (KMODs) it will 
access, before it can load them. KEXTs are usually installed in the Extensions folder 
(at /System/Libraries/Extensions.) The Kernel Extension Manager (in the form of a 
daemon, kextd), always checks here. KEXTs can also be installed in several other 
locations:

� in ROM

� in the Driver partition on a disk

� inside an application bundle

The last location allows an application to register KEXTs without the need to install 
them permanently, elsewhere within the system hierarchy. This may be more 
convenient and allows the KMOD to be associated with a specific, running, 
application. When it starts, the application can call the Kernel Extension Manager 
and register a KEXT. 
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For example, a network packet sniffer application might employ a network kernel 
extension (NKE). A tape backup application would require that a tape driver be 
loaded during the duration of the backup process. When the application exits, the 
kernel extension is no longer needed and can be unloaded.

Note that, although the application is responsible for registering the KEXT, this is 
no guarantee that the corresponding KMODs will actually ever be loaded. It is still 
up to a kernel component, such as the I/O Kit, to determine a need, such as 
matching a piece of hardware to a desired driver, and tell the KEXT Manager to load 
the appropriate KMODs (and their dependencies).
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In a typical preemptive multitasking operating system such as Mac OS X, FreeBSD, 
or Linux, user applications are not allowed direct access to shared resources such 
as RAM, disks, printers, and other devices. Instead, the kernel provides controlled 
access to these resources, and can thus be viewed as a service provider.

Recall that each application exists in its own (user) address space and that the 
kernel exists in a separate (kernel) address space. Privileged operations, such as 
opening a file, initiating network traffic, or shutting down the computer, are 
performed in kernel space and are thus possible only to the kernel.

Applications that need to have privileged operations performed must request the 
appropriate services from the kernel. The kernel provides these operations as 
services to the processes, mapping any associated parameters in and out of user 
space.

Application processes include applications that are explicitly launched and run by 
the user, as well as various system processes, such as daemons, that keep the 
system running smoothly.

Any code to communicate between user space and kernel space must take 
advantage of one or more of the following facilities available in Mac OS X:

� BSD system calls

� Mach IPC

� Shared memory

In Mac OS X, where the kernel itself is modular, interaction between the various 
kernel components is also in the form of services. Each component, such as Mach, 
networking, or the file system, is therefore both a provider of services to 
applications and other components as well as a client of kernel services itself. 



68 Available Services
Preliminary. © Apple Computer, Inc. 7/10/00 

C H A P T E R  9

Kernel Services

Kernel space, however, is a single address space; memory is shared between kernel 
components. Thus, kernel components are able to communicate more freely with 
each other than with applications in user space.

Available Services

Most of the commonly-used kernel services are described below. For each service, 
the provider component is named as well as the client component(s). A brief 
description is also given. For more complete information, see the available 
documentation for the component itself.

In the API listings below, header files are listed as they would be included in real 
code. The default compiler flags should locate the correct file in the “well known 
places”.

In addition, the following header files are assumed to be included at all times:

#include <sys/param.h>      /* useful defines and limits */
#include <sys/types.h>      /* exported data types */
#include <sys/systm.h>      /* "systm" and NOT "system". prototypes */
#include <libkern/libkern.h>    /* more prototypes */

BSD Disk Shim
Provider: I/O Kit

Clients: BSD, File systems

 The BSD Disk shim uses BSD system calls and the I/O Kit user client facility to 
export device driver interfaces into user space as BSD-style device nodes in the 
/dev directory. The BSD disk shim also communicates with the file system and VFS 
stacks. Support for user processes is provided via devfs.
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Device Driver Management
Provider: I/O Kit

Clients: I/O Kit KEXTs (Families and Drivers), user processses

APIs: 

IOKit/IOfamily/*

These services support device driver instantiation, matching, service notification. 
Family APIs publish services; drivers use devices.

Events
Provider: Mach

Clients: All kernel components, user processes

Specific services include port notifications, notification ports, and notification 
events.

Exceptions, Traps
Provider: Mach

Clients: BSD, user processes

This service supports BSD signals, interrupts, and debugging, as well as various 
system calls that can be accessed by user processes.

Families
Provider: I/O Kit

Clients: BSD, File systems, Networking, user processes

APIs: 

IOKit/IOfamily/*
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This service provides APIs for I/O Kit families, including support for networking, 
block, graphics, firewire, USB, human interface, and many other device categories.

File Descriptor Management
Provider: BSD

Clients: File systems, Networking, user processes

APIs: 

#include <sys/filedesc.h>
#include <sys/file.h>

File descriptors provide per-process unique, non-negative integers that are used to 
identify an open file (or socket). For user processes, all interaction with files is done 
via file descriptors. File descriptors are also used for access and manipulation of 
POSIX semaphores and POSIX shared memory.

Host Manipulation and Inquiry
Provider: Mach

Clients: All kernel components

These services are used to get and set host-based information, such as page size 
and processor count.

Inter-process Communication (IPC)
Provider: Mach

Clients:  All kernel components

This service provides various specialized forms of communication between tasks 
(processes) on the local machine. The particular form of IPC in use dictates how 
(and whether) data is processed. Specific services include: send and receive 
operations, as well as primitives for servicing ports and/or port sets. See also: Port 
Right Management, Tasks and Threads Management, Virtual Memory, and 
Low-Level Synchronization Services
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Kernel Loadable Module Support
Provider: I/O Kit

Clients:  File systems, Networking, Loadable modules

Tools: See the man pages for the following utility programs:

 kextload
 kmodload
 kmodstat
 kmodunload

This service provides support for loading and unloading KEXTs.

Kernel Tracing
Provider: BSD

Clients:  Mach, I/O Kit, File systems, Networking, loadable modules

APIs: 

#include <sys/kdebug.h>

This service provides information for performance analysis and debugging 
support, as well as trace points for user processes.

Lock Management
Provider: BSD

Clients: File systems, Networking, loadable modules, user processes

APIs: 

#include <sys/lock.h>

BSD, file systems and networking code should use this service for management of 
locking operations. Note that this API is quite different from the one defined in 
osfmk/kern/lock.h.
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Mach Interface Generator (MIG)
Provider: Mach

Clients:  All kernel components, user processes (Project Builder)

MIG is used to specify IPC formats that are valid on a given port. It is used mostly 
in Remote-Procedure Call (RPC) situations, but supports other forms of 
communication as well. MIG also provides a set of runtime services for 
dispatching incoming communications to the appropriate handler. Project Builder 
has special rules and targets for generating stubs for both sides of the MIG 
interface.

mbuf Management
Provider: Networking

Clients:  NKEs (third-party), File systems

APIs: 

#include <sys/mbuf.h>

These services provide support for the mbuf data structure, which is used to 
manage I/O for network devices. 

Memory and Address Space Management
Provider: Mach

Clients:  All kernel components, user processes

Specific services include virtual memory management, address space allocation, 
page read and write, external memory managers (EMMI), and memory objects.

Port Right Management
Provider: Mach

Clients:  All kernel components
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Port right ownership is the fundamental security mechanism within Mach. Specific 
services include creation and destruction, reference management, copying, explicit 
insertion and removal from other tasks, passing via IPC, grouping of rights into 
sets, and requesting asynchronous notifications about changes in a port’s status. 
See also: Task and Thread Management, IPC.

Processor Management
Provider: Mach

Clients:  All kernel components

These services provide low level hardware support, including processor start, 
processor stop, and power management.

Registry
Provider: I/O Kit

Clients:  I/O Kit Family APIs, user processes.

APIs: 

#include <IOKit/IORegistryEntry.h>

These services support publishing of I/O Kit devices or services and device 
information and relationships.

Queue Management
Provider: BSD

Clients:  File systems, Networking, loadable modules, user processes

APIs: 

#include <sys/queue.h>
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BSD, file systems, and networking code use this service for queue management. It 
provides support for singly- and doubly-linked lists and queues. Note that there 
are subtle differences between this API and the queues found in 
osfmk/kern/queue.h.

Socket management
Provider: Networking

Clients: NKEs (third-party), File systems, user processes

APIs: 

#include <sys/socket.h>
#include <sys/socketvar.h>

These services provide support for the management of sockets.

Network kernel extension support
Provider: Networking

Clients:  NKEs (third-party)

APIs: 

#include <net/kext_net.h>

These services provide general support for network kernel extensions.

Scheduling
Provider: Mach

Clients:  BSD

Specific services include priority-based thread scheduling, preemption, and 
processor resource allocation, based on the following policies: timesharing, 
round-robin, and FIFO fixed priority.
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Synchronization primitives (low level)
Provider: Mach

Clients:  All kernel components, IPC services for exporting to user space.

This Mach service provides low-level implementation support for basic 
asynchronous primitives (wait queues, semaphores) as well as basic locking 
primitives (machine-specific locks, spin locks, mutexes, shared/exclusive 
read/write locks).

Synchronization primitives 
Provider: BSD

Clients:  File systems, Networking, loadable modules, user processes

APIs: 

#include <sys/proc.h>
#include <machine/spl.h>

This BSD service provides higher level support for sleep() and wakeup() calls as 
well as SPLs.

sysctl
Provider: BSD

Clients:  File systems, Networking, loadable modules

APIs: 

#include <sys/sysctl.h>

This service provides a formalized interface for kernel global manipulation and 
tuning.
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Task and thread management
Provider: Mach

Clients:  BSD

This service provides the underlying implementation for BSD process 
management; a process is based on one Mach task and one or more Mach threads. 
A task is the unit of resource ownership. A thread is an independently schedulable 
execution path. 

Timing Services
Provider: Mach

Clients:  BSD, user processes

The kernel provides several different timing services to user processes. Timing 
services support profiling, statistics gathering, and various types of timers, as well 
as current date and time-of-day functionality.

VFS Infrastructure
Provider: BSD

Clients:  File system

APIs: 

#include <sys/buf.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/vnode_if.h>
#include <vfs/vfs_support.h>

This service provides VFS management routines and default library routines in 
support of virtual file system functionality.
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Vnode management
Provider: BSD

Clients: File system

APIs: 

#include <sys/vnode.h>

This service provides allocation, referencing, and serialization functionality in 
support of vnode management.

Zone allocator
Provider: Mach

Clients: BSD, Networking

This service provides support for efficient kernel memory allocation.
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abstraction The process of picking out (abstracting) common features of objects and 
procedures. In programming, an abstraction provides the API that all instances of a thing 
conform to; the abstraction defines shared features. In the I/O Kit, abstractions take the form of 
classes.

address space The address space of a process describes the ranges of memory (both physical 
and virtual) that it uses while running. In Mac OS X, processes do not share address space.

anonymous memory Virtual memory backed by the default pager to swap files, rather than by 
a persistent object. Anonymous memory is zero-initialized and exists only for the life of the task. 
See also default pager, task.

API Application Programming Interface

Apple Public Source License Apple’s Open Source license, available at 
http://www.apple.com/publicsource. The Darwin OS is distributed under this license. See also 
Open Source.

AppleTalk A suite of network protocols that is standard on Macintosh computers.

ASCII American Standard Code for Information Interchange. A 7-bit character set (commonly 
represented using 8-bits) that defines 128 unique character codes. See also Unicode.

BSD Berkeley Software Distribution. Formerly known as the Berkeley version of UNIX, BSD 
is now simply called the BSD operating system. The BSD portion of the Mac OS X kernel is based 
on FreeBSD, a “flavor” of 4.4BSD.

BSD media shim Specifically IOMediaBSDShim; part of the I/O Kit Storage Family. The BSD 
media shim provides access to all storage devices being managed by I/O Kit drivers via 
traditional BSD device nodes.
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bundle A packaging mechanism (implemented as a directory) that stores executable code and 
the software resources related to that code. Applications, plug-ins, and frameworks represent 
types of bundles. Except for frameworks, bundles are file packages, presented by the Finder as 
a single file.

Carbon An application environment on Mac OS X that features a set of programming 
interfaces derived from earlier versions of the Mac OS. The Carbon APIs have been modified to 
work properly with Mac OS X, especially with the foundation of the operating system, the kernel 
environment. Carbon applications can run on Mac OS X, Mac OS 9, and all versions of Mac OS 
8 later than Mac OS 8.1.

CFM Code Fragment Manager.

Classic An application environment on Mac OS X that lets users run non-Carbon legacy Mac 
OS software. It supports programs built for both Power PC and 68k processor architectures and 
is fully integrated with the Finder and the other application environments.

clock An object used to abstract time in Mach.

Cocoa An advanced object-oriented development platform on Mac OS X. Cocoa is a set of 
frameworks with programming interfaces in both Java and Objective-C. It is based on the 
integration of OPENSTEP, Apple technologies, and Java. 

client-provider relationship In the I/O Kit, the relationship between a driver and the family 
it inherits from (client relationship) and the family it connects to (provider relationship).

condition variable A type of variable provided by the POSIX threads functions to help 
synchronize the threads in a task.

console A special window that displays system log messages, as well as output written to the 
standard error and standard output streams by applications launched from the Finder. Also, an 
application by the same name, that displays this information.

control port In Mach, access to the control port allows an object to be manipulated. Also called 
the privileged port. See also port, name port.

cooperative multitasking A multitasking environment in which a running program can 
receive processing time only if other programs allow it; each application must give up control of 
the processor “cooperatively” in order to allow others to run. Mac OS 8 and 9 are cooperative 
multitasking environments. See also preemptive multitasking.

copy-on-write A delayed copy optimization used in Mach: the object to be copied is write 
protected instead, and only physically copied if some thread tries to write to it. See also thread.
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Data Link Interface Layer (DLIL) The part of the Darwin/Mac OS X kernel’s networking 
infrastructure that provides the interface between protocol handling and network device drivers 
in I/O Kit. A generalization of the BSD “ifnet” architecture.

Darwin  Darwin is the name of an Open Source project that includes the Darwin kernel, the 
BSD commands and C libraries, and several additional features.The Darwin kernel is 
synonymous with the Mac OS X kernel. 

daemon A long-lived process, usually without a visible user interface, that performs a 
system-related service. Daemons are usually spawned automatically by the system, and may 
either live forever or be regenerated at intervals. 

default pager In Mach, one of two built-in pagers. The default pager handles non-persistent 
(anonymous) memory. See also anonymous memory, vnode pager, pager.

demand paging An operating system facility that brings pages of data from disk into physical 
memory only as they are needed.

DMA Direct memory access; a means of transferring data between host memory and a 
peripheral device without involving the host processor.

 driver Software that deals with getting data to and from a device, as well as control of that 
device. In the I/O Kit, an object that manages a piece of hardware (a device), implementing the 
appropriate I/O Kit abstractions for that device. See also object.

DVD Digital Versatile Disc or Digital Video Disc. An optical storage medium that provides 
greater capacity and bandwidth than CD-ROM; DVDs are frequently used for multimedia as 
well as data storage.

dyld Dynamic link editor. 

EMMI Mach’s External Memory Management Interface. See also external pager.

Ethernet A high-speed local area network technology. 

exception An interruption to the normal flow of program control, caused by the program itself 
or by executing an illegal instruction.

exception port A Mach port on which a task or thread receives messages when exceptions 
occur.
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external pager A module that manages the relationship between virtual memory and its 
backing store. External pagers are clients of Mach’s EMMI. They may be either in the kernel or 
in user space. The built-in pagers in Mac OS X are the default pager and the vnode pager. See 
also EMMI.

family In the I/O Kit, a family defines a collection of software abstractions that are common to 
all devices of a particular category (for example, PCI, Storage, USB). Families provide 
functionality and services to drivers. See also driver.

FAT File Allocation Table. A data structure used in the MS-DOS file system. Also synonymous 
with the file system that uses it. The FAT file system is also used as part of Microsoft Windows 
and has been adopted for use inside devices such as digital cameras. 

fat files Mach-O files containing object code for more than one machine architecture.

FIFO First In First Out. A data processing scheme in which data is read in the order in which 
it was written, processes are run in the order in which they were scheduled, and so forth.

file descriptor A per-process unique, non-negative integer used to identify an open file (or 
socket).

firewall Software (or a computer running such software) that prevents unauthorized access to 
a network by users outside of the network.

fixed-priority policy In Mach, a scheduling policy in which threads execute for a certain 
quantum of time, and then are put at the end of the queue of threads of equal priority.

fork A stream of data that can be opened and accessed individually under a common file 
name. The Macintosh Standard and Extended file systems store a separate “data” fork and a 
“resource” fork as part of every file; data in each fork can be accessed and manipulated 
independently of the other. Also, in BSD, fork is a system call that creates a new process.

framework A basic structure that holds the parts of some thing together. In Mac OS X, 
specifically, a bundle containing a dynamic shared library and associated resources, including 
image files, header files, and documentation. Also used to describe the barrier between user and 
system functions.

FreeBSD A variant of the BSD operating system. See http://www.freebsd.org for details.

GDB GNU Debugger. GDB is a powerful, source-level debugger with a command line 
interface. GDB is a popular Open Source debugger and is included with the Mac OS X developer 
tools.
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host The computer that’s running (is host to) a particular program. The term is usually used to 
refer to a computer on a network.

host processor The microprocessor on which an application program resides. When an 
application is running, the host processor may call other, peripheral microprocessors, such as a 
digital signal processor, to perform specialized operations.

HFS Hierarchical File System. The Mac OS Standard file system format, used to represent a 
collection of files as a hierarchy of directories (folders), each of which may contain either files or 
folders themselves.

HFS+ Hierarchical File System Plus. The Mac OS Extended file system format. This file system 
format was introduced as part of Mac OS 8.1, adding support for file names longer than 31 
characters, Unicode representation of file and directory names, and efficient operation on very 
large disks.

IDE Interactive Development Environment; alternatively, Integrated Development 
Environment. An application or set of tools that allows a programmer to write, compile, edit, 
and perhaps test and debug within an integrated, interactive environment.

inheritance attribute In Mach, a value indicating the degree to which a parent process and its 
child process share the parent process’s address space. A memory page can be inherited 
copy-on-write, shared, or not at all.

in-line data Data that’s included directly in a Mach message, as opposed to referred to by a 
pointer. See also out-of-line data.

I/O Input/output; the sending and retrieving of information into the memory of a program, 
usually to and from a file or a peripheral device.

I/O Kit Apple’s object-oriented I/O development model. The I/O Kit provides a framework 
for simplified driver development, supporting many families of devices. See also family.

Info Plist See information property list.

information property list A special form of property list with predefined keys for specifying 
basic bundle attributes and information of interest, such as supported document types and 
offered services. See also bundle, property list.

IPC Inter-process communication; the transfer of information between processes. 

KDK Kernel Development Kit.
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Kerberos An authentication system based on symmetric key cryptography. Used in MIT's 
Project Athena and adopted by the Open Software Foundation (OSF).

kernel The complete Mac OS X core operating system environment that includes Mach, BSD, 
the I/O Kit, File systems, and Networking components.

kernel extension See KEXT.

kernel port A Mach port whose receive right is held by the kernel. See also task port; thread 
port.

KEXT Kernel EXTension. Kernel extensions extend the functionality of the kernel. The I/O Kit, 
File system, and Networking components are designed to allow and expect the creation and use 
of KEXTs. 

KMOD Kernel module. A file (or files) in Mach-O format, containing the actual binary code 
used by a KEXT. A KMOD is the minimum unit of code that can be loaded into the kernel. See 
also KEXT, Mach-O.

Mach The lowest level of the Mac OS X kernel. Mach provides such basic services and 
abstractions as threads, tasks, ports, IPC, scheduling, physical and virtual address space 
management, VM, and timers.

Mach-O Mach Object file format. The preferred object file format for Mac OS X.

Mach factor A measurement of how busy a Mach-based system (such as Mac OS X) is. Unlike 
a load average (as used in Linux or BSD systems), higher Mach factors mean the system is less 
busy. 

Mach server A task that provides services to clients, using a MiG-generated RPC interface.

main thread By default, a process has one thread, the main thread. If a process has multiple 
threads, the main thread is the first thread in the process. A user process can use the POSIX 
thread API to create other user threads.

makefile A makefile details the files, dependencies, and rules by which an executable 
application is built or by which a set of programs may be run.

memory object An object managed by a pager, that represents a file (for example) in memory. 
See also pager
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memory protection A system of memory management in which programs are prevented from 
being able to modify or corrupt the memory partition of another program. Mac OS 8 and 9 do 
not have memory protection; Mac OS X does.

memory-mapped files A facility that maps virtual memory onto a physical file. Thereafter, 
any access to that part of virtual memory causes the corresponding page of the physical file to 
be accessed. The contents of the file can be changed by changing the contents in memory.

message In Mach, a message consists of a header and a variable-length body; some operating 
system services are invoked by passing a message from a thread to the Mach port representing 
the task that provides the desired service.

microkernel A kernel implementing a minimal set of abstractions. Typically, higher-level OS 
services such as file systems and device drivers are implemented in layers above a microkernel, 
possibly in trusted user-mode servers. See also monolithic kernel.

MIG Mach’s message interface generator. MiG provides a procedure call interface to Mach’s 
system of interprocess messaging.

monolithic kernel A kernel architecture in which all pieces of the kernel are closely 
intertwined. A monolithic kernel provides substantial performance improvements; however, it 
is difficult to evolve the individual components independently. The Mac OS X kernel is a hybrid 
of the monolithic and microkernel models.

multicast A process in which a single packet may be addressed to multiple recipients. 
Multicast is used, for example, in streaming video, in which many megabytes of data are sent 
over the network.

multi-homing The ability to have multiple network addresses in one computer. For example, 
multi-homing might be used to create a system in which one address is used to talk to hosts 
outside a firewall and the other to talk to hosts inside; the computer provides facilities for 
passing information between the two.

multitasking Describes an operating system that allows the concurrent execution of multiple 
programs. Mac OS X uses preemptive multitasking. Mac OS 8 and 9 use cooperative 
multitasking.

mutex Mutual exclusion variable; a type of variable provided by the POSIX threads functions 
to help protect critical regions in a multiple-thread task.

name port In Mach, access to the name port names the object. See also port, control port.
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name space An agreed-upon context in which names (identifiers) can be defined. Within a 
given name space, all names must be unique.

named memory entry A handle (a port) to a mapable object backed by a memory manager. 
The object can be a region or a memory object.

named region In Mach, a form of named memory entry that provides a form of memory 
sharing.

NAT Network Address Translation. A scheme that transforms network packets at a gateway 
so network addresses that are valid on one side of the gateway are translated into addresses that 
are valid on the other side.

network A group of hosts that can directly communicate with each other.

NFS Network File System. An NFS file server allows users on the network to share files as if 
the files were on the user’s local disk.

NKE Network Kernel Extension. NKEs provide a way to extend and modify the networking 
infrastructure of Mac OS X dynamically, without recompiling or relinking the kernel. The effect 
is immediate and does not require rebooting the system.

NMI Non-maskable interrupt; an interrupt produced by a particular keyboard sequence or 
button. It can be used to interrupt a hung system. 

notify port A Mach port on which a task receives messages from the kernel advising it of 
changes in port access rights and of the status of messages it has sent.

nonsimple message In Mach, a message that contains either a reference to a port or a pointer 
to data. See also simple message.

nub An I/O Kit object that represents a device or logical service. Each nub provides access to 
the device or service it represents, and provides such services as matching, arbitration, and 
power management. It is most common that a driver publishes one nub for each individual 
device or service it controls; it is possible for a driver that vends only a single device or service 
to act as its own nub.

NVRAM Non-volatile RAM. RAM storage that retains its state even when the power is off.

object In object-oriented programming, an instance of a class.

OHCI Open Host Controller Interface. The register-level  
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standard that is used by most USB controller chips.

Open Transport A communications architecture for implementing network protocols and 
other communication features on computers running Mac OS. Open Transport provides a set of 
programming interfaces that supports, among other things, both the AppleTalk and TCP/IP 
protocols.

Open Source A definition of software that includes freely available access to source code, 
redistribution, modification, and derived works. The full definition is available at 
www.opensource.org.

out-of-line data Data that’s passed by reference in a Mach message, as opposed to being 
included in the message. See also in-line data.

packet An individual piece of information sent on a network.

page The unit of measurement used to divide memory.

pager A module responsible for providing the data for the pages of a memory object. See also 
default pager, vnode pager.

physical address An address to which a hardware device, such as a memory chip, can directly 
respond. Programs, including the Mach kernel, use virtual addresses that are translated to 
physical addresses by mapping hardware controlled by the Mach kernel. 

PEF Preferred Executable Format for Mac OS. See also Mach-O ( the preferred format for Mac 
OS X).

POSIX The Portable Operating System Interface. An operating system interface 
standardization effort supported by ISO/IEC, IEEE, and The Open Group.

port In Mach, a secure uni-directional channel for communication between tasks running on a 
single system. In IP transport protocols, an integer identifier used to select a receiver for an 
incoming packet, or to specify the sender of an outgoing packet.

port name In Mach, an integer index into a port name space; a port right is specified by its port 
name. See also port rights.

port rights In Mach, the ability to send to or receive from a Mach port. Also known as port 
access rights.

port set In Mach, a set of zero or more Mach ports. A thread can receive messages sent to any 
of the ports contained in a port set by specifying the port set as a parameter to msg_receive().
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preemptive multitasking A type of multitasking in which the operating system can interrupt 
a currently running task in order to run another task, as needed. See also cooperative 
multitasking.

preemption The act of interrupting a currently running program in order to give time to 
another task.

priority In Mach scheduling, a number between 0 and 127 that indicates how likely a thread is 
to run. The higher the thread’s priority, the more likely the thread is to run. See also scheduling 
policy.

process A BSD abstraction for a running program. A process’ resources include a virtual 
address space, threads, and file descriptors. In Mac OS X, a process is based on one Mach task 
and one or more Mach threads.

process identifier, or process ID A number that uniquely identifies a process.

protected memory See memory protection. 

protocol handler A network module that extracts data from input packets (giving the data to 
interested programs) and inserts data into output packets (giving the output packet to the 
appropriate network device driver).

programmed I/O I/O in which the CPU accomplishes data transfer with explicit load and 
store instructions to device registers, as opposed to DMA. Byte-by-byte or word-by-word data 
transfer to a device. Also known as “direct I/O.” See also DMA.

property list A textual way to represent data. Elements of the property list represent data of 
certain types, such as arrays, dictionaries, and strings. System routines allow programs to read 
property lists into memory and convert the textual data representation into “real” data. See also 
information property list.

Pthreads POSIX threads implementation.

quantum The fixed amount of time a thread or process can run before being preempted.

RAM Random-access memory; memory that a microprocessor can either read or write to.

real-time A concept of time when using a computer. Predictable, time-critical behavior. If the 
user defines or initiates an event and the event occurs instantaneously, the computer is said to 
be operating in real time. Real-time support is important for applications such as multimedia. 
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receive rights In Mach, the ability to receive messages on a Mach port. Only one task at a time 
can have receive rights for any one port. See also send rights.

reply port A Mach port associated with a thread that is used in remote procedure calls.

ROM Read-only memory, that is, memory that cannot be written to.

root Also called “superuser”. An administrative account with special privileges. For example, 
only the root account can load kernel extensions. Also, the root file system (the root of the file 
system inverted tree).

RPC Remote Procedure Call. In Mach, RPCs are implemented using MIG-generated messages.

SCSI Small Computer Systems Interface. A standard connector and communications protocol 
used for connecting devices such as disk drives to computers.

scheduling The determination of when each process or task runs, including assignment of 
start times.

scheduling policy In Mach, a thread’s scheduling policy determines how the thread’s priority 
is set and under what circumstances the thread runs. See also priority.

SDK Software Development Kit.

send rights In Mach, the ability to send messages to a Mach port. Many tasks can have send 
rights for the same port. See also receive rights.

simple message In Mach, a message that contains neither references to ports nor pointers to 
data. See also nonsimple message.

SMP Symmetric Multi-processing. An operating system in which two or more processors are 
managed by one kernel, sharing the same memory, having equal access to I/O devices, and in 
which any task, including kernel tasks, can run on any processor.

SPL Set Priority Level. A request that sets the current processor priority level, the level used 
by the kernel to control interrupt delivery to the CPU.

socket In BSD-derived systems, a socket refers to different entities in user and kernel 
operation. For a user process, a socket is a file descriptor that has been allocated using socket(2). 
For the kernel, a socket is the data structure allocated when the kernel’s implementation of the 
socket(2) call is made. In AppleTalk protocols, a socket serves the same purpose as a “port” in 
IP transport protocols.
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stackable file systems A file system layer that has as its input the standard VFS file system 
interfaces and that may call other file system layers beneath it to implement file system 
operations. All stackable file systems support the same interface and can be layered on top of one 
another to add unique functionality. 

task A Mach abstraction, consisting of a virtual address space and a port name space. A task 
itself performs no computation; rather, it is the framework in which threads run. See also 
threads.

task port A kernel port that represents a task and is used to manipulate that task. See also 
kernel port; thread port.

TCP/IP Transmission Control Protocol/Internet Protocol. An industry standard protocol used 
to deliver messages between computers over the network. TCP/IP is the primary networking 
protocol used in Mac OS X.

thread In Mach, the unit of CPU utilization. A thread consists of a program counter, a set of 
registers, and a stack pointer. See also task.

thread port A kernel port that represents a thread and is used to manipulate that thread. See 
also kernel port; task port.

thread-safe Code that can be executed safely by several threads simultaneously.

timesharing policy In Mach, a scheduling policy in which a thread’s priority is raised and 
lowered to balance its resource consumption against other timesharing threads

UFS UNIX File system. An industry standard file system format used in UNIX similar 
operating systems such as BSD. UFS in Mac OS X is a derivative 4.4BSD UFS. Specifically, its disk 
layout is not compatible with other BSD UFS implementations.

UDF Universal Disk Format. The file system format used in DVD disks.

Unicode A 16-bit character set that defines unique character codes to characters in a wide 
range of languages. Unlike ASCII, which defines 128 distinct characters typically represented in 
8 bits, there are as many as 65,536 distinct Unicode characters that represent the unique 
characters used in most foreign languages.

USB Universal Serial Bus. A multiplatform bus standard that can support up to 127 peripheral 
devices, including including printers, digital cameras, keyboards and mice, and storage devices.

user client In I/O Kit, a means of allowing user-level code to communicate across the 
user-kernel address space boundary, as, for example, in a printer or scanner application. 
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UTF-8 A Unicode Transformation Format used to represent a sequence of 16-bit Unicode 
characters with an equivalent sequence of 8-bit characters, none of which are zero. This sequence 
of characters can be represented using an ordinary C language string.

virtual address An address that is usable by software. Each task has its own range of virtual 
addresses, beginning at address zero. The Mach operating system makes the CPU hardware 
map these addresses onto physical memory only when necessary, using disk memory at other 
times. See also physical address.

virtual memory The use of a disk partition or a file on disk to provide the same facilities 
usually provided by RAM. The virtual memory provides 32 bit (minimum) protected address 
space for each task and facilitates efficient sharing of that address space.

VFS Virtual File System. A set of standard internal file system interfaces and utilities that 
facilitate support for additional file systems. VFS provides an infrastructure for file systems built 
in the kernel.

VM See Virtual Memory. 

vnode A data structure containing information about a file.

vnode pager In Mach, one of two built-in pagers. The vnode pager maps files into memory 
objects. See also default pager, pager.

work loop The main loop of an application or module that waits repeatedly for incoming 
events and dispatches them.

XML Extensible Markup Language. An “extremely simple” dialect of SGML (Standard 
Generalized Markup Language), XML provides a “metalanguage” containing rules for 
constructing specialized markup languages. XML users can create their own tags, making XML 
very flexible.



92
Preliminary. © Apple Computer, Inc. 7/10/00 

Glossary



 

93
Preliminary. © Apple Computer, Inc. 7/10/00

Bibliography
Apple Mac OS X Publications

Hello Kernel: Creating a Kernel Extension With Project Builder (tutorial)

Hello IOKit: Creating a Device Driver With Project Builder  (tutorial)

Inside Mac OS X: Network Kernel Extensions

Inside Mac OS X: System Overview

General UNIX and Open Source Resources

A Quarter Century of UNIX
Peter H. Salus
Addison-Wesley, 1994, ISBN 0-201-54777-5

Berkeley Software Distribution (set)
CSRG, UC Berkeley
USENIX and O’Reilly, 1994, ISBN 1-56592-082-1

The Cathedral & the Bazaar
Musings on Linux and Open Source by an Accidental Revolutionary
 Eric S. Raymond
O’Reilly & Associates, 1999, ISBN 1-56592-724-9

The New Hacker’s Dictionary, 3rd. Ed.
Eric S. Raymond
MIT Press, 1996, ISBN 0-262-68092-0

Open Sources
Voices from the Open Source Revolution
Edited by Chris DiBona, Sam Ockman & Mark Stone
O’Reilly & Associates, 1999, ISBN 1-56592-582-3

                 
Proceedings of the First Conference on Freely Redistributable 
Software
Free Software Foundation
FSF, 1996, ISBN 1-882114-47-7



94
Preliminary. © Apple Computer, Inc. 7/10/00 

 

The UNIX Companion
Harley Hahn
Osborne/MGH, 1995, ISBN 0-07-882149-5

The UNIX Desk Reference:
The hu.man Pages
Peter Dyson
Sybex, 1996, ISBN 0-7821-1658-2

The UNIX Programming Environment
Brian W. Kernighan, Rob Pike
Prentice Hall, 1984, ISBN 0-13-937681-X
Osborne, 1996, ISBN 0-07-882189-4

Internals 

Advanced Topics in UNIX:
Processes, Files, & Systems
Ronald J. Leach
Wiley, 1996, ISBN 1-57176-159-4

The Complete FreeBSD
Greg Lehey
Walnut Creek CDROM Books, 1999, ISBN 1-57176-246-9

The Design and Implementation of the 4.4BSD UNIX Operating System 
Marshall Kirk McKusick, et al
Addison-Wesley, 1996, ISBN 0-201-54979-4

The Design of the UNIX Operating System
Maurice J. Bach
Prentice Hall, 1986, ISBN 0-13-201799-7

Linux Kernel Internals
Michael Beck, et al
Addison-Wesley, 1996, ISBN 0-201-87741-4

Lions’ Commentary on UNIX 6th Edition with Source Code
John Lions
Peer-to-Peer, 1996, ISBN 1-57398-013-7



 

95
Preliminary. © Apple Computer, Inc. 7/10/00

Panic!:
UNIX System Crash Dump Analysis
Chris Drake, Kimberly Brown
Prentice Hall, 1995, ISBN 0-13-149386-8

UNIX Internals:
The New Frontiers
Uresh Vahalia
Prentice-Hall, 1995, ISBN 0-13-101908-2

UNIX Systems for Modern Architectures:
Symmetric Multiprocessing and Caching for Kernel Programmers
Curt Schimmel
Addison-Wesley, 1994, ISBN 0-201-63338-8

Optimizing PowerPC code
Gary Kacmarcik, 1995
Addison-Wesley Publishing Company
ISBN:    0-201-40839-2

papers

Berkeley Software Architecture Manual
4.4BSD Edition
William Joy, Robert Fabry, Samuel Leffler, M. Kirk McKusick, Michael Karels
Computer Systems Research Group, Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkely

Mach

CMU Computer Science:
 A 25th Aniversary Commemorative

Richard F. Rashid, Ed.
ACM Press, 1991, ISBN 0-201-52899-1

Load Distribution:
the Implementation of the Mach Microkernal
Dejan S. Milojicic
Vieweg, 1994, ISBN 3-528-05424-7



96
Preliminary. © Apple Computer, Inc. 7/10/00 

 

Programming under Mach
Boykin, et al
Addison-Wesley, 1993, ISBN 0-201-52739-1

Mach Workshop and Symposium Proceedings
USENIX

Mach Workshop Proceedings
USENIX, October 1990, no ISBN

Mach Symposium Proceedings
USENIX, November 1991, no ISBN

Mach III Symposium Proceedings
USENIX, April 1993, ISBN 1-880446-49-9

Mach 3 Documentation Series
Open Group Research Institute (RI)

Final Draft Specifications OSF/1 1.3 Engineering Release
RI, May 1993

OSF Mach Final Draft Kernel Principles
RI, May 1993

OSF Mach Final Draft Kernel Interfaces
RI, May 1993

OSF Mach Final Draft Server Writer’s Guide
RI, May 1993

OSF Mach Final Draft Server Library Interfaces
RI, May 1993

Research Institute Microkernel Series
Open Group Research Institute (RI)

Operating Systems Collected Papers, Volume I
RI, March 1993

Operating Systems Collected Papers, Volume II
RI, October 1993



 

97
Preliminary. © Apple Computer, Inc. 7/10/00

Operating Systems Collected Papers, Volume III
RI, April 1994

Operating Systems Collected Papers, Volume IV
RI, October 1995

USENIX Conference Papers (available online at www.usenix.org)

 Mach: A New Kernel Foundation for UNIX Development
Proceedings of the Summer 1986 USENIX Conference,
Atlanta, GA.

UNIX as an Application Program
Proceedings of the Summer 1990 USENIX Conference,
Anaheim, CA.

OSF RI papers

   Spec ‘93

    OSF Mach Final Draft Kernel Interfaces

    OSF Mach Final Draft Kernel Principles

    OSF Mach Final Draft Server Library Interfaces
 
    OSF Mach Final Draft Server Writer's Guide

    OSF Mach Kernel Interface Changes

   Spec'94 

    OSF RI 1994 Mach Kernel Interfaces Draft
     OSF RI 1994 Mach Kernel Interfaces Draft (Part A)

    OSF RI 1994 Mach Kernel Interfaces Draft (Part B)

    OSF RI 1994 Mach Kernel Interfaces Draft (Part C)



98
Preliminary. © Apple Computer, Inc. 7/10/00 

 

Additional Papers

Debugging an object oriented system using the Mach interface     

Unix File Access and Caching in a Multicomputer Environment

Untyped MIG: The Protocol

Untyped MIG: What Has Changed and Migration Guide

    Towards a World-Wide Civilization of Objects

    A Preemptible Mach Kernel

A Trusted, Scalable, Real-Time Operating System Environment

Mach Scheduling Framework 

Networking

UNIX Network Programming,
Volume 1, Second Edition: 
Networking APIs: Sockets and XTI 
W. Richard Stevens
Prentice Hall, 1998. 

UNIX Network Programming,
Volume 2, Second Edition: 
Interprocess Communications 
W. Richard Stevens
Prentice Hall, 1999. 

TCP/IP Illustrated, Volume 1
The Protocols
W. Richard Stevens
Addison-Wesley, 1994



 

99
Preliminary. © Apple Computer, Inc. 7/10/00

TCP/IP Illustrated, Volume2
The Implementation
W. Richard Stevens
Addison-Wesley, 1995

TCP/IP Illustrated, Volume 3,
TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols
W. Richard Stevens
Addison-Wesley, 1996

Operating Systems 

Advanced Computer Architecture:
Parallelism, Scalability, Programmability
Kai Hwang
McGraw-Hill, 1993, ISBN 0-07-031622-8

Concurrent Systems:
An Integrated Approach to Operating Systems, Database, and 
Distributed Systems
Jean Bacon
Addison-Wesley, 1993, ISBN 0-201-41677-8

Distributed Operating Systems
Andrew S. Tanenbaum
Prentice Hall, 1995, ISBN 0-13-219908-4

Distributed Operating Systems:
The Logical Design
A. Goscinski
Addison-Wesley, 1991, ISBN 0-201-41704-9

Distributed Systems, Concepts, and Designs
G. Coulouris, et al
Addison-Wesley, 1994, ISBN 0-201-62433-8

Operating System Concepts, 4th Ed.
Abraham Silberschatz, Peter Galvin
Addison-Wesley, 1994, ISBN 0-201-50480-4



100
Preliminary. © Apple Computer, Inc. 7/10/00 

 

POSIX
Information Technology-Portable Operating System Interface (POSIX): 
System Application Program Interface (API) (C Language)
ANSI/IEEE Std 1003.1, 1996 Edition
ISO/IEC 9945-1: 1996
IEEE STANDARD OFFICE
ISBN 1-55937-573-6

Programming with POSIX threads
David R. Butenhof
Addison Wesley Longman, Inc., 1997
ISBN 0-201-63392-2

Programming

Advanced Programming in the UNIX Environment
Richard W. Stevens
Addison-Wesley, 1992

Debugging with GDB: The GNU Source-Level Debugger for GDB version 4.18 
Richard Stallman, Cygnus Support
Out of Print
See http://www.redhat.com/support/manuals/gnupro99r1/ for the online version

Open Source Development with CVS 
Karl Franz Fogel
Coriolis Group, 1999, ISBN: 1576104907

Porting UNIX Software: From Download to Debug
Greg Lehey
O’Reilly, 1995, ISBN 1-56592-126-7

The Standard C Library
P.J. Plauger
Prentice Hall, 1992, ISBN 0-13-131509-9



 

101
Preliminary. © Apple Computer, Inc. 7/10/00

Websites - Online Resources

Apple Computer’s developer website (http://www.apple.com/developer) is a general 
repository for developer documentation. Additionally, the following sites provide more 
domain-specifc information.

Apple’s Public Source projects and Darwin OS

http://www.publicsource.apple.com

The Berkeley Software Distribution (BSD)

http://www.FreeBSD.org

http://www.NetBSD.org

http://www.OpenBSD.org

BSD Networking

http://www.kohala.com/start/

CVS (Concurrent Versions System)

http://www.publicsource.apple.com/tools/cvs/cederquist

Embedded C++

http://www.caravan.net/ec2plus

GDB, GNUPro Toolkit 99r1 Documentation

http://www.redhat.com/support/manuals/gnupro99r1/

The Internet Engineering Task Force (IETF)

http://www.ietf.org

jam

http://www.perforce.com/jam/jam.html

The PowerPC CPU

http://www.motorola.com/SPS/PowerPC/

The Single UNIX Specification Version 2

http://www.opengroup.org/onlinepubs/007908799



102
Preliminary. © Apple Computer, Inc. 7/10/00 

 

Stackable File Systems

http://www.isi.edu/~johnh/WORK/stacking_faq.htm

The USENIX Association, USENIX Proceedings

http://www.usenix.org

http://www.usenix.org/publications/library/

--------------------------------------------------
 11



103
Preliminary. © Apple Computer, Inc. 7/10/00

Index

A

address space 14, 22
AFS 56
Andrew file system See also AFS 56
anonymous memory 26
API 27
Apple Public Source License 15
Apple publications 11

Fatbrain.com 11
Inside Mac OS X books 11
System Overview 11

Apple websites 11
Apple Developer Connection 11
AppleCare Tech Info Library 11

B

BSD 15, 16, 18, 33
debugging 69
media shim 47
signals 69
system calls 47, 67

BSD Disk shim
and kernel services 68

buffer cache 37
bundles 61

C

C++ 39, 62
Carbon 15
CFM (Code Fragment Manager) 36
CFPlugin 46
Classic 15

clock 30
Cocoa 15
Computer Systems Research Group (CSRG) 33
console 62
control port 25
cooperative multitasking 14
copy-on-write 27
Core Graphics 60

D

daemons 67
Darwin 14, 39
data link 52
debugging 63

and kernel services 69, 71
using GDB 63

default pager 26
descriptors 35
devfs 47
DHCP 33
directory

/dev 47
driver 45

client-provider relationship 43
dyld (dynamic link editor) 36

E

EMMI 26, 72
External Memory Management Interface See 

EMMI
external pager 18



 

104
Preliminary. © Apple Computer, Inc. 7/10/00

F

file system 17
stackable 20

file systems 55
and Carbon 55
and vnode 56
and VOP 56, 57
Andrew 56

firewall 19
fixed priority

FIFO 74
fixed-priority 24
FreeBSD 15, 18, 33, 37, 67

G

GDB 63

H

HFS 20, 55
HFS+ 20, 55

I

I/O Kit 16, 19, 39
and kernel services 68, 70, 73
architecture 41
drivers 42, 62
families 41, 70
nubs 42
object 42
support for imaging devices 44

internet services 33
IOMedia 47
IPC 18, 22, 25, 28

services 75
ISO 9660 20, 55

J

Java 15

K

KDK 40
Kerberos 9
kernel

abstractions 22
architecture 13, 17
environment 16
facilities 35
microkernel 21
monolithic 21
user space 45
wired resources 59

kernel development kit See KDK
Kernel Extension Manager 62
kernel extension See KEXT
kernel module See KMOD
kernel space 14
kernel thread 34
KEXT 20, 59

and kernel services 69, 71
and system panic 59
as bundles 61
debugging 63
in supervisor mode 59

KMOD 61

L

Linux 9
lock sets 28
locks 30

and kernel services 71



 

105
Preliminary. © Apple Computer, Inc. 7/10/00

M

Mac OS (Classic) 8
Mac OS Extended 37
Mac OS Extended Format See also HFS+
Mac OS Standard Format See also HFS
Mach 15, 17, 18, 61

IPC 47
shared memory 47
thread 34

Mach 3.0 21
Mach Interface Generator See MIG
Mach IPC 67
Mach messaging 14
Mach-O 36
main thread 34
memory 33

anonymous 26
management 16, 26, 35
object 22
protection 13, 33
shared 67
sharing 14
virtual 40

memory mapped device 37
message queue 25, 28, 29
messaging 21

APIs 27
microkernel 21
MIG 22, 72
MkLinux 16
multicast 19
multi-homing 19
multiuser 33
mutex 30

N

name port 25
name space 53

as Creator 53
as Type 53

named
memory entries 26
regions 27

NAT 19
Network Kernel Extension See NKE
network kernel extension See NKE
networking 17, 19
NeXT 16
NeXT (OpenStep) 8
NFS 20, 33, 55
NIS 33
NKE 16, 49

and protocol stacks 49
notifications 21, 28, 30
nub 42

O

object-oriented frameworks 39
OHCI 46
Open Source 9, 14

P

packets 51
pager 26

default 26
vnode 26

PEF 36
performance, kernel services for 71
plug and play 19
plug-in 20
plug-in architectures 60

Core Graphics 60
QuickTime 60

port 22, 24
control 25
name 25, 26
name space 26
privileged 25
receive rights 23



 

106
Preliminary. © Apple Computer, Inc. 7/10/00

port (continued)
right name space 22
rights 25
set 25

POSIX 18, 23, 34
semaphores 70
shared memory 70

power management 19
PPP 33
preemption 13
preemptive multitasking 14, 33
privileged port 25
process 14
Project Builder 62
protocol stack 49
Pthread 23
Pthreads 18

Q

queue
management 74
of messages 25

QuickTime 60

R

real-time 18, 21
remote procedure call See RPC
routing 19
RPC 18, 22, 28, 30

S

SDK 44
semaphore 28, 29
shared libraries 14, 27
shared memory 67
shared memory region 21
signals 35

SLIP 33
SMP 18, 21, 34
socket

management of 74
structure 50

SPL 75
split object 46
synchronization 21

T

task 22, 24
TCP/IP 33
Terminal 62
thread 21, 24

kernel 34
Mach 34
main 34
migration 30

time 22
timesharing 24
timing, and kernel services 76

U

UFS 20, 55
Unified Buffer Cache 37
University of California at Berkeley 33
user client 46
user ID 18
user space 14, 45

and kernel APIs 45
user thread 59
UTF-8 20

V

VFS 20, 55, 57
and kernel services 76

virtual 33



 

107
Preliminary. © Apple Computer, Inc. 7/10/00

virtual address space 21, 22
Virtual File System See also VFS
Virtual File System See VFS
virtual machine 34
virtual memory 33, 40
vnode pager 26
VOP 57

W

Windows NT 8
Windows NT File system See also NTFS
work loops 25




	Kernel Environment
	Contents
	About This Book
	Audience Profile
	Road Map
	Other
	Information on the Web

	Kernel Architecture
	Darwin
	Architecture
	Mach
	BSD
	I/O Kit

	Networking
	File Systems

	Kernel Extensions

	Mach
	Mach Kernel Abstractions
	Tasks And Threads
	Ports, Port Rights, Port Sets, and Port Name Spaces
	Memory Management
	Task To Task Communication (IPC)
	IPC Transactions and Event Dispatching
	Message Queues
	Semaphores
	Notifications
	Locks
	Remote Procedure Calls (RPC)

	Time Management

	BSD
	BSD Facilities
	Differences between Mac OS X and BSD
	For further reading

	Device Drivers and the I/O Kit
	Redesigning the I/O Model
	I/O Kit Architecture
	Families
	Nubs
	Drivers
	Example

	Scope
	Presenting kernel APIs in user space
	BSD Media Shim


	Networking and Network Kernel Extensions
	Review of 4.4BSD Network Architecture
	NKE Types
	NKE Modes

	Modifications to 4.4BSD Networking Architecture

	File Systems and VFS Stacks
	Working with the File System
	A Politically Correct Example

	Extending the Kernel
	Implementation
	Dependencies
	Building and Testing your KEXT
	Debugging

	Installed KEXTs

	Kernel Services
	Available Services
	BSD Disk Shim
	Device Driver Management
	Events
	Exceptions, Traps
	Families
	File Descriptor Management
	Host Manipulation and Inquiry
	Inter-process Communication (IPC)
	Kernel Loadable Module Support
	Kernel Tracing
	Lock Management
	Mach Interface Generator (MIG)
	mbuf Management
	Memory and Address Space Management
	Port Right Management
	Processor Management
	Registry
	Queue Management
	Socket management
	Network kernel extension support
	Scheduling
	Synchronization primitives (low level)
	Synchronization primitives
	sysctl
	Task and thread management
	Timing Services
	VFS Infrastructure
	Vnode management
	Zone allocator


	Glossary
	Bibliography
	Index

