
Java security, Part 1: Crypto basics

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Java security programming concepts............................... 4
3. Ensuring the integrity of a message 7
4. Keeping a message confidential..................................... 11
5. Secret messages with public keys 15
6. Signatures without paper ... 18
7. Proving you are who you are... 23
8. Trusting the code... 26
9. SSL/TLS: Securing C/S communication............................ 28
10. Wrapup and resources... 31

Java security, Part 1: Crypto basics Page 1 of 33

Section 1. About this tutorial

What is this tutorial about?
There is perhaps no software engineering topic of more timely importance than application
security. Attacks are costly, whether the attack comes from inside or out, and some attacks
can expose a software company to liability for damages. As computer (and especially
Internet) technologies evolve, security attacks are becoming more sophisticated and
frequent. Staying on top of the most up-to-date techniques and tools is one key to application
security; the other is a solid foundation in proven technologies such as data encryption,
authentication, and authorization.

The Java platform, both the basic language and library extensions, provides an excellent
foundation for writing secure applications. This tutorial covers the basics of cryptography and
how it is implemented in the Java programming language, and it offers example code to
illustrate the concepts.

In this first installment of a two-part tutorial, we cover material in the library extensions -- now
part of the JDK 1.4 base -- known as Java Cryptography Extension (JCE) and Java Secure
Sockets Extension (JSSE). In addition, this tutorial introduces the CertPath API, which is new
for JDK 1.4. In Part 2 (see Resources on page 31), we'll expand the discussion to encompass
access control, which is managed in the Java platform by the Java Authentication and
Authorization Service (JAAS).

Should I take this tutorial?
This is an intermediate-level tutorial; it assumes you know how to read and write basic Java
programs, both applications and applets.

If you are already a Java programmer and have been curious about cryptography (topics
such as private and public key encryption, RSA, SSL, certificates) and the Java libraries that
support them (JCE, JSSE), this tutorial is for you. It does not assume any previous
background in cryptography, JCE, or JSSE.

This tutorial introduces the basic cryptographic building block concepts. Each concept is
followed by the Java implementation considerations, a code example, and the results of the
example execution.

Tools, code samples, and installation requirements
You'll need the following items to complete the programming exercises in this tutorial:

• JDK 1.4, Standard Edition

• The tutorial source code and classes, JavaSecurity1-source.jar, so that you can follow the
examples as we go along

• The Bouncy Castle Crypto library for the RSA example

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 33 Java security, Part 1: Crypto basics

http://java.sun.com/j2se/1.4/download.html
http://java.sun.com/j2se/1.4/download.html
http://java.sun.com/j2se/1.4/download.html
http://java.sun.com/j2se/1.4/download.html
JavaSecurity1-source.jar
http://www/bouncycastle.org
http://www/bouncycastle.org
http://www/bouncycastle.org
http://www/bouncycastle.org

• A browser that supports the Java 1.4 plug-in

You can use JDK 1.3.x, but you must install JCE and JSSE yourself.

A note on the code examples
The code examples dump encrypted data directly to the screen. In most cases, this will result
in strange-looking control characters, some of which may occasionally cause
screen-formatting problems. This is not good programming practice (it would be better to
convert them to displayable ASCII characters or decimal representations), but has been
done here to keep the code examples and their output brief.

In most cases in the example execution sections, the actual strings have been modified to be
compatible with the character set requirements of this tutorial. Also, in most examples, we
look up and display the actual security provider library used for a given algorithm. This is
done to give the user a better feel of which libraries are called for which functions. Why?
Because, in most installations, there are a number of these providers installed.

About the author
Brad Rubin is principal of Brad Rubin & Associates Inc., a computer-security consulting
company specializing in wireless network and Java application security and education. Brad
spent 14 years with IBM in Rochester, MN, working on all facets of the AS/400 hardware and
software development, starting with its first release. He was a key player in IBM's move to
embrace the Java platform, and was lead architect of IBM's largest Java application, a
business application framework product called SanFrancisco (now part of WebSphere). He
was also chief technology officer for the Data Storage Division of Imation Corp., as well as
the leader of its R&D organization.

Brad has degrees in Computer and Electrical Engineering, and a Doctorate in Computer
Science from the University of Wisconsin, Madison. He currently teaches the Senior Design
course in Electrical and Computer Engineering at the University of Minnesota, and will
develop and teach the university's Computer Security course in Fall 2002. You can reach
Brad at BradRubin@BradRubin.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 3 of 33

mailto:BradRubin@BradRubin.com

Section 2. Java security programming concepts

How the Java platform facilitates secure programming
The Java programming language and environment has many features that facilitate secure
programming:

• No pointers, which means that a Java program cannot address arbitrary memory
locations in the address space.

• A bytecode verifier, which operates after compilation on the .class files and checks for
security issues before execution. For example, an attempt to access an array element
beyond the array size will be rejected. Because buffer overflow attacks are responsible for
most system breaches, this is an important security feature.

• Fine-grained control over resource access for both applets and applications. For
example, applets can be restricted from reading from or writing to disk space, or can be
authorized to read from only a specific directory. This authorization can be based on who
signed the code (see The concept of code signing on page 26) and the http address of the
code source. These settings appear in a java.policy file.

• A large number of library functions for all the major cryptographic building blocks and
SSL (the topic of this tutorial) and authentication and authorization (discussed in the
second tutorial in this series). In addition, numerous third-party libraries are available for
additional algorithms.

What are secure programming techniques?
Simply put, there are a number of programming styles and techniques available to help
ensure a more secure application. Consider the following as two general examples:

• Storing/deleting passwords. If a password is stored in a Java String object, the
password will stay in memory until it is either garbage collected or the process ends. If it is
garbage collected, it will still exist in the free memory heap until the memory space is
reused. The longer the password String stays in memory, the more vulnerable it is to
snooping.

Even worse, if real memory runs low, the operating system might page this password
String to the disk's swap space, so it is vulnerable to disk block snooping.

To minimize (but not eliminate) these exposures, you should store passwords in char
arrays and zero them out after use. (Strings are immutable, so you can't zero them out.)

• Smart serialization. When objects are serialized for storage or transmission any private
fields are, by default, present in the stream. So, sensitive data is vulnerable to snooping.
You can use the transient keyword to flag an attribute so it is skipped in the streaming.

We'll be discussing these and other techniques in more detail when we encounter a need for

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 33 Java security, Part 1: Crypto basics

them throughout the tutorial.

Security is integrated in JDK 1.4
Prior to JDK 1.4, many security functions had to be added to the base Java code distribution
as extensions. Tight U.S. export restrictions required this separation of function.

Now, new relaxed regulations open the door to tighter integration of security features and the
base language. The following packages -- used as extensions prior to the 1.4 release -- are
now integrated into JDK 1.4:

• JCE (Java Cryptography Extension)

• JSSE (Java Secure Sockets Extension)

• JAAS (Java Authentication and Authorization Service)

JDK 1.4 also introduces two new functions:

• JGSS (Java General Security Service)

• CertPath API (Java Certification Path API)

JCE, JSSE, and the CertPath API are the subject of this tutorial. We'll focus on JAAS in the
next tutorial in this series. Neither tutorial covers the JGSS (which provides a generic
framework to securely exchange messages between applications).

Security is enriched with third-party libraries
We can enhance an already rich set of functions in the current Java language with third-party
libraries, also called providers. Providers add additional security algorithms.

As an example of a library, we'll be working with the Bouncy Castle provider (see Resources
on page 31). The Bouncy Castle library provides other cryptographic algorithms, including the
popular RSA algorithm discussed in What is public key cryptography? on page 15 andWhat
are digital signatures? on page 18 of this tutorial.

While your directory names and java.security files might be a bit different, here is the
template for installing the Bouncy Castle provider. To install this library, download the
bcprov-jdk14-112.jar file and place it in the j2sdk1.4.0\jre\lib\ext and the Program
Files\Java\J2re1.4.0\lib\ext directories. In both java.security files, which are in the same
directories as above but use "security" instead of "ext", add the following line:

security.provider.6=org.bouncycastle.jce.provider.BouncyCastleProvider

to the end of this group of lines:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 5 of 33

security.provider.5=sun.security.jgss.SunProvider
security.provider.6=org.bouncycastle.jce.provider.BouncyCastleProvider

Looking ahead
In this section, we've introduced the features the Java language provides, either fully
integrated or extension-based, that help to ensure that programming remains secure. We've
offered some general examples of secure programming techniques to help you become
familiar with the concept. We've covered security technologies that used to be extensions but
are now integrated into the version 1.4 release; we've also noted two new security
technologies. And we've demonstrated that third-party libraries can enhance security
programs by offering new technologies.

In the remainder of this tutorial, we will familiarize you with these concepts designed to
provide secure messaging (as they apply to Java programming):

• Message digests. Coupled with message authentication codes, a technology that ensures
the integrity of your message.

• Private key encryption. A technology designed to ensure the confidentiality of your
message.

• Public key encryption. A technology that allows two parties to share secret messages
without prior agreement on secret keys.

• Digital signatures. A bit pattern that identifies the other party's message as coming from
the appropriate person.

• Digital certificates. A technology that adds another level of security to digital signatures
by having the message certified by a third-party authority.

• Code signing. The concept that a trusted entity embeds a signature in delivered code.

• SSL/TLS. A protocol for establishing a secure communications channel between a client
and a server. Transport Layer Security (TLS) is the replacement for Secure Sockets Layer
(SSL).

As we discuss each of these topics, we'll serve up examples and sample code.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 33 Java security, Part 1: Crypto basics

Section 3. Ensuring the integrity of a message

Overview
In this section, we will learn about message digests, which take the data in a message and
generate a block of bits designed to represent the "fingerprint" of the message. We will also
cover the JDK 1.4-supported algorithms, classes, and methods related to message digests,
offer a code example and a sample execution code for both the message digest and
message authentication features.

What is a message digest?
A message digest is a function that ensures the integrity of a message. Message digests
take a message as input and generate a block of bits, usually several hundred bits long, that
represents the fingerprint of the message. A small change in the message (say, by an
interloper or eavesdropper) creates a noticeable change in the fingerprint.

The message-digest function is a one-way function. It is a simple matter to generate the
fingerprint from the message, but quite difficult to generate a message that matches a given
fingerprint.

Message digests can be weak or strong. A checksum -- which is the XOR of all the bytes of a
message -- is an example of a weak message-digest function. It is easy to modify one byte to
generate any desired checksum fingerprint. Most strong functions use hashing. A 1-bit
change in the message leads to a massive change in the fingerprint (ideally, 50 percent of
the fingerprint bits change).

Algorithms, classes, and methods
JDK 1.4 supports the following message-digest algorithms:

• MD2 and MD5, which are 128-bit algorithms

• SHA-1, which is a 160-bit algorithm

• SHA-256, SHA-383, and SHA-512, which offer longer fingerprint sizes of 256, 383, and
512 bits, respectively

MD5 and SHA-1 are the most used algorithms.

The MessageDigest class manipulates message digests. The following methods are used
in the Message digest code example on page 8 :

• MessageDigest.getInstance("MD5"): Creates the message digest.

• .update(plaintext): Calculates the message digest with a plaintext string.

• .digest(): Reads the message digest.

If a key is used as part of the message-digest generation, the algorithm is known as a
message-authentication code . JDK 1.4 supports the HMAC/SHA-1 and HMAC/MD5
message-authentication code algorithms.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 7 of 33

The Mac class manipulates message-authentication codes using a key produced by the
KeyGenerator class. The following methods are used in the Message authentication code
example on page 9 :

• KeyGenerator.getInstance("HmacMD5") and .generateKey(): Generates the
key.

• Mac.getInstance("HmacMD5"): Creates a MAC object.

• .init(MD5key): Intializes the MAC object.

• .update(plaintext) and .doFinal(): Calculates the MAC object with a plaintext
string.

Message digest code example

import java.security.*;
import javax.crypto.*;
//
// Generate a Message Digest
public class MessageDigestExample {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {

System.err.println("Usage: java MessageDigestExample text");
System.exit(1);

}
byte[] plainText = args[0].getBytes("UTF8");
//
// get a message digest object using the MD5 algorithm
MessageDigest messageDigest = MessageDigest.getInstance("MD5");
//
// print out the provider used
System.out.println("\n" + messageDigest.getProvider().getInfo());
//
// calculate the digest and print it out
messageDigest.update(plainText);
System.out.println("\nDigest: ");
System.out.println(new String(messageDigest.digest(), "UTF8"));

}
}

Message digest sample execution

D:\IBM>java MessageDigestExample "This is a test!"

SUN (DSA key/parameter generation; DSA signing; SHA-1, MD5 digests
; SecureRandom; X.509 certificates; JKS keystore; PKIX CertPathValidator
; PKIX CertPathBuilder; LDAP, Collection CertStores)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 33 Java security, Part 1: Crypto basics

Digest:
D93,.x2%$kd8xdp3di5*

Message authentication code example

import java.security.*;
import javax.crypto.*;
//
// Generate a Message Authentication Code
public class MessageAuthenticationCodeExample {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {
System.err.println
("Usage: java MessageAuthenticationCodeExample text");

System.exit(1);
}
byte[] plainText = args[0].getBytes("UTF8");
//
// get a key for the HmacMD5 algorithm
System.out.println("\nStart generating key");
KeyGenerator keyGen = KeyGenerator.getInstance("HmacMD5");
SecretKey MD5key = keyGen.generateKey();
System.out.println("Finish generating key");
//
// get a MAC object and update it with the plaintext
Mac mac = Mac.getInstance("HmacMD5");
mac.init(MD5key);
mac.update(plainText);
//
// print out the provider used and the MAC
System.out.println("\n" + mac.getProvider().getInfo());
System.out.println("\nMAC: ");
System.out.println(new String(mac.doFinal(), "UTF8"));

}
}

Message authentication sample execution

D:\IBM>java MessageAuthenticationCodeExample "This is a test!"

Start generating key
Finish generating key

SunJCE Provider (implements DES, Triple DES, Blowfish, PBE, Diffie-Hellman,
HMAC-MD5, HMAC-SHA1)

MAC:
Dkdj47x4#.@kd#n8a-x>

Note that the key generation takes a long time because the code is generating excellent
quality pseudo-random numbers using the timing of thread behavior. Once the first number is
generated, the others take much less time.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 9 of 33

Also, notice that unlike the message digest, the message-authentication code uses a
cryptographic provider. (For more on providers, see Security is enriched with third-party
libraries on page 5 .)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 33 Java security, Part 1: Crypto basics

Section 4. Keeping a message confidential

Overview
In this section, we'll examine the uses of private key encryption and focus on such concepts
as cipher blocks, padding, stream ciphers, and cipher modes. We'll quickly detail cipher
algorithms, classes, and methods and illustrate this concept with a code example and
sample executions.

What is private key cryptography?
Message digests may ensure integrity of a message, but they can't be used to ensure the
confidentiality of a message. For that, we need to use private key cryptography to exchange
private messages.

Consider this scenario: Alice and Bob each have a shared key that only they know and they
agree to use a common cryptographic algorithm, or cipher. In other words, they keep their
key private. When Alice wants to send a message to Bob, she encrypts the original
message, known as plaintext, to create ciphertext and then sends the ciphertext to Bob. Bob
receives the ciphertext from Alice and decrypts the ciphertext with his private key to re-create
the original plaintext message. If Eve the eavesdropper is listening in on the communication,
she hears only the ciphertext, so the confidentiality of the message is preserved.

You can encrypt single bits or chunks of bits, called blocks. The blocks, called cipher blocks,
are typically 64 bits in size. If the message is not a multiple of 64 bits, then the short block
must be padded (more on padding at What is padding? on page 11). Single-bit encryption is
more common in hardware implementations. Single-bit ciphers are called stream ciphers.

The strength of the private key encryption is determined by the cryptography algorithm and
the length of the key. If the algorithm is sound, then the only way to attack it is with a
brute-force approach of trying every possible key, which will take an average of (1/2)*2*n
attempts, where n is the number of bits in the key.

When the U.S. export regulations were restrictive, only 40-bit keys were allowed for export.
This key length is fairly weak. The official U.S. standard, the DES algorithm, used 56-bit keys
and this is becoming progressively weaker as processor speeds accelerate. Generally,
128-bit keys are preferred today. With them, if one million keys could be tried every second, it
would take an average of many times the age of the universe to find a key!

What is padding?
As we mentioned in the previous panel, if a block cipher is used and the message length is
not a multiple of the block length, the last block must be padded with bytes to yield a full
block size. There are many ways to pad a block, such as using all zeroes or ones. In this
tutorial, we'll be using PKCS5 padding for private key encryption and PKCS1 for public key
encryption.

With PKCS5, a short block is padded with a repeating byte whose value represents the
number of remaining bytes. We won't be discussing padding algorithms further in this tutorial,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 11 of 33

but for your information, JDK 1.4 supports the following padding techniques:

• No padding

• PKCS5

• OAEP

• SSL3

The BouncyCastle library (see Security is enriched with third-party libraries on page 5 and
Resources on page 31) supports additional padding techniques.

Modes: Specifying how encryption works
A given cipher can be used in a variety of modes. Modes allow you to specify how encryption
will work.

For example, you can allow the encryption of one block to be dependent on the encryption of
the previous block, or you can make the encryption of one block independent of any other
blocks.

The mode you choose depends on your needs and you must consider the trade-offs
(security, ability to parallel process, and tolerance to errors in both the plaintext and the
ciphertext). Selection of modes is beyond the scope of this tutorial (see Resources on page 31
for further reading), but again, for your information, the Java platform supports the following
modes:

• ECB (Electronic Code Book)

• CBC (Cipher Block Chaining)

• CFB (Cipher Feedback Mode)

• OFB (Output Feedback Mode)

• PCBC (Propagating Cipher Block Chaining)

Algorithms, classes, and methods
JDK 1.4 supports the following private key algorithms:

• DES. DES (Data Encryption Standard) was invented by IBM in the 1970s and adopted by
the U.S. government as a standard. It is a 56-bit block cipher.

• TripleDES. This algorithm is used to deal with the growing weakness of a 56-bit key while
leveraging DES technology by running plaintext through the DES algorithm three times,
with two keys, giving an effective key strength of 112 bits. TripleDES is sometimes known
as DESede (for encrypt, decrypt, and encrypt, which are the three phases).

• AES. AES (Advanced Encryption Standard) replaces DES as the U.S. standard. It was
invented by Joan Daemen and Vincent Rijmen and is also known as the Rinjdael
algorithm. It is a 128-bit block cipher with key lengths of 128, 192, or 256 bits.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 33 Java security, Part 1: Crypto basics

• RC2, RC4, and RC5. These are algorithms from a leading encryption security company,
RSA Security.

• Blowfish. This algorithm was developed by Bruce Schneier and is a block cipher with
variable key lengths from 32 to 448 bits (in multiples of 8), and was designed for efficient
implementation in software for microprocessors.

• PBE. PBE (Password Based Encryption) can be used in combination with a variety of
message digest and private key algorithms.

The Cipher class manipulates private key algorithms using a key produced by the
KeyGenerator class. The following methods are used in the Private key cryptography code
example on page 13 :

• KeyGenerator.getInstance("DES"), .init(56), and .generateKey():
Generates the key.

• Cipher.getInstance("DES/ECB/PKCS5Padding"): Creates the Cipher object
(specifying the algorithm, mode, and padding).

• .init(Cipher.ENCRYPT_MODE, key): Initializes the Cipher object.

• .doFinal(plainText): Calculates the ciphertext with a plaintext string.

• .init(Cipher.DECRYPT_MODE, key): Decrypts the ciphertext.

• .doFinal(cipherText): Computes the ciphertext.

Private key cryptography code example

import java.security.*;
import javax.crypto.*;
//
// encrypt and decrypt using the DES private key algorithm
public class PrivateExample {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {
System.err.println("Usage: java PrivateExample text");
System.exit(1);

}
byte[] plainText = args[0].getBytes("UTF8");
//
// get a DES private key
System.out.println("\nStart generating DES key");
KeyGenerator keyGen = KeyGenerator.getInstance("DES");
keyGen.init(56);
Key key = keyGen.generateKey();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 13 of 33

System.out.println("Finish generating DES key");
//
// get a DES cipher object and print the provider
Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
System.out.println("\n" + cipher.getProvider().getInfo());
//
// encrypt using the key and the plaintext
System.out.println("\nStart encryption");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] cipherText = cipher.doFinal(plainText);
System.out.println("Finish encryption: ");
System.out.println(new String(cipherText, "UTF8"));

//
// decrypt the ciphertext using the same key
System.out.println("\nStart decryption");
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] newPlainText = cipher.doFinal(cipherText);
System.out.println("Finish decryption: ");

System.out.println(new String(newPlainText, "UTF8"));
}

}

Private key cryptography sample execution

D:\IBM>java PrivateExample "This is a test!"

Start generating DES key
Finish generating DES key

SunJCE Provider (implements DES, Triple DES, Blowfish, PBE, Diffie-Hellman,
HMAC-MD5, HMAC-SHA1)

Start encryption
Finish encryption:
Kdkj4338*3n1#kxkgtixo4

Start decryption
Finish decryption:
This is a test!

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 33 Java security, Part 1: Crypto basics

Section 5. Secret messages with public keys

Overview
In this section, we'll look at public key cryptography, a feature that solves the problem of
encrypting messages between parties without prior arrangement on the keys. We'll take a
short walk through the algorithms, classes, and methods that support the public key function,
and offer a code sample and execution to illustrate the concept.

What is public key cryptography?
Private key cryptography suffers from one major drawback: how does the private key get to
Alice and Bob in the first place? If Alice generates it, she has to send it to Bob, but it is
sensitive information so it should be encrypted. However, keys have not been exchanged to
perform the encryption.

Public key cryptography, invented in the 1970s, solves the problem of encrypting messages
between two parties without prior agreement on the key.

In public key cryptography, Alice and Bob not only have different keys, they each have two
keys. One key is private and must not be shared with anyone. The other key is public and
can be shared with anyone.

When Alice wants to send a secure message to Bob, she encrypts the message using Bob's
public key and sends the result to Bob. Bob uses his private key to decrypt the message.
When Bob wants to send a secure message to Alice, he encrypts the message using Alice's
public key and sends the result to Alice. Alice uses her private key to decrypt the message.
Eve can eavesdrop on both public keys and the encrypted messages, but she cannot decrypt
the messages because she does not have either of the private keys.

The public and private keys are generated as a pair and need longer lengths than the
equivalent-strength private key encryption keys. Typical key lengths for the RSA algorithm
are 1,024 bits. It is not feasible to derive one member of the key pair from the other.

Public key encryption is slow (100 to 1,000 times slower than private key encryption), so a
hybrid technique is usually used in practice. Public key encryption is used to distribute a
private key, known as a session key, to another party, and then private key encryption using
that private session key is used for the bulk of the message encryption.

Algorithms, classes, and methods
The following two algorithms are used in public key encryption:

• RSA. This algorithm is the most popular public key cipher, but it's not supported in JDK
1.4. You must use a third-party library like BouncyCastle to get this support.

• Diffie-Hellman. This algorithm is technically known as a key-agreement algorithm . It
cannot be used for encryption, but can be used to allow two parties to derive a secret key
by sharing information over a public channel. This key can then be used for private key

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 15 of 33

encryption.

The Cipher class manipulates public key algorithms using keys produced by the
KeyPairGenerator class. The following methods are used in the Public key cryptography
code example on page 16 example:

• KeyPairGenerator.getInstance("RSA"), .initialize(1024), and
.generateKeyPair(): Generates the key pair.

• Cipher.getInstance("RSA/ECB/PKCS1Padding") Creates a Cipher object
(specifying the algorithm, mode, and padding).

• .init(Cipher.ENCRYPT_MODE, key.getPublic()): Initializes the Cipher object.

• .doFinal(plainText): Calculates the ciphertext with a plaintext string.

• .init(Cipher.DECRYPT_MODE, key.getPrivate()) and
.doFinal(cipherText): Decrypts the ciphertext.

Public key cryptography code example

import java.security.*;
import javax.crypto.*;
//
// Public Key cryptography using the RSA algorithm.
public class PublicExample {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {
System.err.println("Usage: java PublicExample text");
System.exit(1);

}
byte[] plainText = args[0].getBytes("UTF8");
//
// generate an RSA key
System.out.println("\nStart generating RSA key");
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);
KeyPair key = keyGen.generateKeyPair();
System.out.println("Finish generating RSA key");
//
// get an RSA cipher object and print the provider
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
System.out.println("\n" + cipher.getProvider().getInfo());
//
// encrypt the plaintext using the public key
System.out.println("\nStart encryption");
cipher.init(Cipher.ENCRYPT_MODE, key.getPublic());
byte[] cipherText = cipher.doFinal(plainText);
System.out.println("Finish encryption: ");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 33 Java security, Part 1: Crypto basics

System.out.println(new String(cipherText, "UTF8"));
//
// decrypt the ciphertext using the private key
System.out.println("\nStart decryption");
cipher.init(Cipher.DECRYPT_MODE, key.getPrivate());
byte[] newPlainText = cipher.doFinal(cipherText);
System.out.println("Finish decryption: ");
System.out.println(new String(newPlainText, "UTF8"));

}
}

Public key cryptography sample execution

D:\IBM>java PublicExample "This is a test!"

Start generating RSA key
Finish generating RSA key

BouncyCastle Security Provider v1.12

Start encryption
Finish encryption:
Ajsd843*342l,AD;LKJL;1!*AD(XLKASD498asdjlkkKSFJHDuhpja;d(kawe#kjalfcas,
.asd+,1LKSDJf;khaouiwheyahdsl87458q9734hjfc*nuywe

Start decryption
Finish decryption:
This is a test!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 17 of 33

Section 6. Signatures without paper

Overview
In this section, we'll examine digital signatures, the first level of determining the identification
of parties that exchange messages. We'll illustrate both difficult and easy ways to identify the
message source through code samples. We'll also list the digital signature algorithms that
JDK 1.4 supports, and look at the classes and methods involved.

What are digital signatures?
Did you notice the flaw in the public key message exchange described in What is public key
cryptography? on page 15 ? How can Bob prove that the message really came from Alice?
Eve could have substituted her public key for Alice's, then Bob would be exchanging
messages with Eve thinking she was Alice. This is known as a Man-in-the-Middle attack .

We can solve this problem by using a digital signature -- a bit pattern that proves that a
message came from a given party.

One way of implementing a digital signature is using the reverse of the public key process
described in What is public key cryptography? on page 15 . Instead of encrypting with a
public key and decrypting with a private key, the private key is used by a sender to sign a
message and the recipient uses the sender's public key to decrypt the message. Because
only the sender knows the private key, the recipient can be sure that the message really
came from the sender.

In actuality, the message digest (What is a message digest? on page 7), not the entire
message, is the bit stream that is signed by the private key. So, if Alice wants to send Bob a
signed message, she generates the message digest of the message and signs it with her
private key. She sends the message (in the clear) and the signed message digest to Bob.
Bob decrypts the signed message digest with Alice's public key and computes the message
digest from the cleartext message and checks that the two digests match. If they do, Bob can
be sure the message came from Alice.

Note that digital signatures do not provide encryption of the message, so encryption
techniques must be used in conjunction with signatures if you also need confidentiality.

You can use the RSA algorithm for both digital signatures and encryption. A U.S. standard
called DSA (Digital Signature Algorithm) can be used for digital signatures, but not for
encryption.

Algorithms
JDK 1.4 supports the following digital signature algorithms:

• MD2/RSA
• MD5/RSA
• SHA1/DSA

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 33 Java security, Part 1: Crypto basics

• SHA1/RSA

We'll examine two examples in this section. The first, the hard way (see Digital signature
code example: The hard way on page 19), uses the primitives already discussed for message
digests and public key cryptography to implement digital signatures. The second, the easy
way (see Digital signature code example: The easy way on page 20), uses the Java
language's direct support for signatures.

Digital signature code example: The hard way

import java.security.*;
import javax.crypto.*;
//
// This program demonstrates the digital signature technique at the
// primative level by generating a message digest of the plaintext

// and signing it with an RSA private key, to create the signature.
// To verify the signature, the message digest is again generated from
// the plaintext and compared with the decryption of the signature
// using the public key. If they match, the signature is verified.
public class DigitalSignature1Example {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {
System.err.println("Usage: java DigitalSignature1Example text");
System.exit(1);

}
byte[] plainText = args[0].getBytes("UTF8");
//
// get an MD5 message digest object and compute the plaintext digest
MessageDigest messageDigest = MessageDigest.getInstance("MD5");
System.out.println("\n" + messageDigest.getProvider().getInfo());
messageDigest.update(plainText);
byte[] md = messageDigest.digest();
System.out.println("\nDigest: ");
System.out.println(new String(md, "UTF8"));
//
// generate an RSA keypair
System.out.println("\nStart generating RSA key");
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);
KeyPair key = keyGen.generateKeyPair();
System.out.println("Finish generating RSA key");
//
// get an RSA cipher and list the provider
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
System.out.println("\n" + cipher.getProvider().getInfo());
//
// encrypt the message digest with the RSA private key
// to create the signature
System.out.println("\nStart encryption");
cipher.init(Cipher.ENCRYPT_MODE, key.getPrivate());
byte[] cipherText = cipher.doFinal(md);
System.out.println("Finish encryption: ");
System.out.println(new String(cipherText, "UTF8"));
//
// to verify, start by decrypting the signature with the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 19 of 33

// RSA private key
System.out.println("\nStart decryption");
cipher.init(Cipher.DECRYPT_MODE, key.getPublic());

byte[] newMD = cipher.doFinal(cipherText);
System.out.println("Finish decryption: ");
System.out.println(new String(newMD, "UTF8"));
//
// then, recreate the message digest from the plaintext
// to simulate what a recipient must do
System.out.println("\nStart signature verification");
messageDigest.reset();
messageDigest.update(plainText);
byte[] oldMD = messageDigest.digest();
//
// verify that the two message digests match
int len = newMD.length;
if (len > oldMD.length) {
System.out.println("Signature failed, length error");
System.exit(1);

}
for (int i = 0; i < len; ++i)
if (oldMD[i] != newMD[i]) {
System.out.println("Signature failed, element error");
System.exit(1);

}
System.out.println("Signature verified");

}
}

Sample execution

D:\IBM>java DigitalSignature1Example "This is a test!"

SUN (DSA key/parameter generation; DSA signing; SHA-1, MD5 digests
; SecureRandom; X.509 certificates; JKS keystore; PKIX CertPathValidator
; PKIX CertPathBuilder; LDAP, Collection CertStores)

Digest:
D647dbdek12*e,ad.?e

Start generating RSA key
Finish generating RSA key

BouncyCastle Security Provider v1.12

Start encryption
Finish encryption:
Akjsdfp-9q8237nrcas-9de8fn239-4rb[*[OPOsjkdfJDL:JF;lkjs;ldj

Start decryption
Finish decryption:
iNdf6D213$dcd(ndz!0)

Start signature verification
Signature verified

Digital signature code example: The easy way

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 33 Java security, Part 1: Crypto basics

The Signature class manipulates digital signatures using a key produced by the
KeyPairGenerator class. The following methods are used in the example below:

• KeyPairGenerator.getInstance("RSA"), .initialize(1024), and
.generateKeyPair(): Generates the keys.

• Cipher.getInstance("MD5WithRSA"): Creates the Signature object.

• .initSign(key.getPrivate()): Initializes the Signature object.

• .update(plainText) and .sign(): Calculates the signature with a plaintext string.

• .initVerify(key.getPublic()) and .verify(signature): Verifies the signature.

import java.security.*;
import javax.crypto.*;
//
// This example uses the digital signature features to generate and
// verify a signature much more easily than the previous example
public class DigitalSignature2Example {

public static void main (String[] args) throws Exception {
//
// check args and get plaintext
if (args.length !=1) {
System.err.println("Usage: java DigitalSignature1Example text");
System.exit(1);

}
byte[] plainText = args[0].getBytes("UTF8");
//
// generate an RSA keypair
System.out.println("\nStart generating RSA key");
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);

KeyPair key = keyGen.generateKeyPair();
System.out.println("Finish generating RSA key");
//
// get a signature object using the MD5 and RSA combo
// and sign the plaintext with the private key,
// listing the provider along the way

Signature sig = Signature.getInstance("MD5WithRSA");
sig.initSign(key.getPrivate());
sig.update(plainText);
byte[] signature = sig.sign();
System.out.println(sig.getProvider().getInfo());
System.out.println("\nSignature:");
System.out.println(new String(signature, "UTF8"));
//
// verify the signature with the public key
System.out.println("\nStart signature verification");
sig.initVerify(key.getPublic());
sig.update(plainText);
try {
if (sig.verify(signature)) {
System.out.println("Signature verified");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 21 of 33

} else System.out.println("Signature failed");
} catch (SignatureException se) {
System.out.println("Signature failed");

}
}

}

Sample execution

Start generating RSA key
Finish generating RSA key
Sun JSSE provider(implements RSA Signatures, PKCS12, SunX509 key/trust
factories, SSLv3, TLSv1)

Signature:
Ldkjahasdlkjfq[?owc42093nhasdk1a;sn;a#a;lksjd;fl@#kjas;ldjf78qwe09r7

Start signature verification
Signature verified

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 33 Java security, Part 1: Crypto basics

Section 7. Proving you are who you are

Overview
In this section, we'll discuss digital certificates, the second level to determining the identity of
a message originator. We'll look at certificate authorities and the role they play. We'll
examine key and certificate repositories and management tools (keytool and keystore) and
discuss the CertPath API, a set of functions designed for building and validating certification
paths.

What are digital certificates?
As you likely noticed, there is a problem with the digital signature scheme described in What
are digital signatures? on page 18 . It proves that a message was sent by a given party, but
how do we know for sure that the sender really is who she says she is. What if someone
claims to be Alice and signs a message, but is actually Amanda? We can improve our
security by using digital certificates which package an identity along with a public key and is
digitally signed by a third party called a certificate authority or CA.

A certificate authority is an organization that verifies the identity, in the real-world physical
sense, of a party and signs that party's public key and identity with the CA private key. A
message recipient can obtain the sender's digital certificate and verify (or decrypt) it with the
CA's public key. This proves that the certificate is valid and allows the recipient to extract the
sender's public key to verify his signature or send him an encrypted message. Browsers and
the JDK itself come with built-in certificates and their public keys from several CAs.

JDK 1.4 supports the X.509 Digital Certificate Standard.

Understanding keytool and keystore
The Java platform uses a keystore as a repository for keys and certificates. Physically, the
keystore is a file (there is an option to make it an encrypted one) with a default name of
.keystore. Keys and certificates can have names, called aliases, and each alias can be
protected by a unique password. The keystore itself is also protected by a password; you can
choose to have each alias password match the master keystore password.

The Java platform uses the keytool to manipulate the keystore. This tool offers many options;
the following example (keytool example on page 24) shows the basics of generating a public
key pair and corresponding certificate, and viewing the result by querying the keystore.

The keytool can be used to export a key into a file, in X.509 format, that can be signed by a
certificate authority and then re-imported into the keystore.

There is also a special keystore that is used to hold the certificate authority (or any other
trusted) certificates, which in turn contains the public keys for verifying the validity of other
certificates. This keystore is called the truststore. The Java language comes with a default
truststore in a file called cacerts. If you search for this filename, you will find at least two of
these files. You can display the contents with the following command:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 23 of 33

keytool -list -keystore cacerts
Use a password of "changeit"

keytool example
In this example, using the default keystore of .keystore, we generate a self-signed certificate
using the RSA algorithm with an alias of JoeUserKey and then view the created certificate.
We will use this certificate in The concept of code signing on page 26 to sign a JAR file.

D:\IBM>keytool -genkey -v -alias JoeUserKey -keyalg RSA
Enter keystore password: password
What is your first and last name?
[Unknown]: Joe User

What is the name of your organizational unit?
[Unknown]: Security

What is the name of your organization?
[Unknown]: Company, Inc.

What is the name of your City or Locality?
[Unknown]: User City

What is the name of your State or Province?
[Unknown]: MN

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=Joe User, OU=Security, O="Company, Inc.", L=User City, ST=MN, C=US
correct?
[no]: y

Generating 1,024 bit RSA key pair and self-signed certificate (MD5WithRSA)
for: CN=Joe User, OU=Security, O="Company, Inc.", L=User City,
ST=MN, C=US

Enter key password for <JoeUserKey>
(RETURN if same as keystore password):

[Saving .keystore]

D:\IBM>keytool -list -v -alias JoeUserKey

Enter keystore password: password
Alias name: JoeUserKey
Creation date: Apr 15, 2002
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Joe User, OU=Security, O="Company, Inc.", L=User City, ST=MN,
C=US
Issuer: CN=Joe User, OU=Security, O="Company, Inc.", L=User City, ST=MN,
C=US
Serial number: 3cbae448
Valid from: Mon Apr 15 09:31:36 CDT 2002 until: Sun Jul 14 09:31:36
CDT 2002
Certificate fingerprints:

MD5: 35:F7:F7:A8:AC:54:82:CE:68:BF:6D:42:E8:22:21:39
SHA1: 34:09:D4:89:F7:4A:0B:8C:88:EF:B3:8A:59:F3:B9:65:AE:CE:7E:C9

CertPath API

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 33 Java security, Part 1: Crypto basics

The Certification Path API is new for JDK 1.4. It is a set of functions for building and
validating certification paths or chains. This is done implicitly in protocols like SSL/TLS (see
What is Secure Sockets Layer/Transport Layer Security? on page 28) and JAR file signature
verification, but can now be done explicitly in applications with this support.

As mentioned in What are digital certificates? on page 23 , a CA can sign a certificate with its
private key, and if the recipient holds the CA certificate that has the public key needed for
signature verification, it can verify the validity of the signed certificate.

In this case, the chain of certificates is of length two -- the anchor of trust (the CA certificate)
and the signed certificate. A self-signed certificate is of length one -- the anchor of trust is the
signed certificate itself.

Chains can be of arbitrary length, so in a chain of three, a CA anchor of trust certificate can
sign an intermediate certificate; the owner of this certificate can use its private key to sign
another certificate. The CertPath API can be used to walk the chain of certificates to verify
validity, as well as to construct these chains of trust.

Certificates have expiration dates, but can be compromised before they expire, so Certificate
Revocation Lists (CRL) must be checked to really ensure the integrity of a signed certificate.
These lists are available on the CA Web sites, and can also be programmatically
manipulated with the CertPath API.

The specific API and code examples are beyond the scope of this tutorial, but Sun has
several code examples available in addition to the API documentation.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 25 of 33

Section 8. Trusting the code

Overview
In this section, we'll review the concept of code signing, focusing on the tool that manages
the certification of a JAR file, Jarsigner.

The concept of code signing
JAR files are the Java platform equivalent of ZIP files, allowing multiple Java class files to be
packaged into one file with a .jar extension. This JAR file can then be digitally signed, proving
the origin and the integrity of the class file code inside. A recipient of the JAR file can decide
whether or not to trust the code based on the signature of the sender and can be confident
that the contents have not been tampered with before receipt. The JDK comes with a
jarsigner tool that provides this function.

In deployment, access to machine resources can be based on the signer's identity by putting
access control statements in the policy file.

Jarsigner tool
The jarsigner tool takes a JAR file and a private key and corresponding certificate as input,
then generates a signed version of the JAR file as output. It calculates the message digests
for each class in the JAR file and then signs these digests to ensure the integrity of the file
and to identify the file owner.

In an applet environment, an HTML page references the class file contained in a signed JAR
file. When this JAR file is received by the browser, the signature is checked against any
installed certificates or against a certificate authority public signature to verify validity. If no
existing certificates are found, the user is prompted with a screen giving the certificate details
and asking if the user wants to trust the code.

Code signing example
In this example, we first create a JAR file from a .class file and then sign it by specifying the
alias for the certificate in the keystore that is used for the signing. We then run a verification
check on the signed JAR file.

D:\IBM>jar cvf HelloWorld.jar HelloWorld.class
added manifest
adding: HelloWorld.class(in = 372) (out= 269)(deflated 27%)

D:\IBM>jarsigner HelloWorld.jar JoeUserKey
Enter Passphrase for keystore: password

D:\IBM>jarsigner -verify -verbose -certs HelloWorld.jar

137 Mon Apr 15 12:38:38 CDT 2002 META-INF/MANIFEST.MF
190 Mon Apr 15 12:38:38 CDT 2002 META-INF/JOEUSERK.SF

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 33 Java security, Part 1: Crypto basics

938 Mon Apr 15 12:38:38 CDT 2002 META-INF/JOEUSERK.RSA
0 Mon Apr 15 12:38:00 CDT 2002 META-INF/

smk 372 Mon Apr 15 12:33:02 CDT 2002 HelloWorld.class

X.509, CN=Joe User, OU=Security, O="Company, Inc.", L=User City,
ST=MN, C=US (joeuserkey)

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore
i = at least one certificate was found in identity scope

jar verified.

Code signing example execution
Here is the HTML for this program:

<HTML>
<HEAD>
<TITLE> Hello World Program </TITLE>
</HEAD>
<BODY>
<APPLET CODE="HelloWorld.class" ARCHIVE="HelloWorld.jar"
WIDTH=150 HEIGHT=25>

</APPLET>
</BODY>
</HTML>

When this example is executed with a browser that uses the Java plug-in as the Java virtual
machine, a dialog box pops up asking if the user wants to install and run the signed applet
distributed by "Joe User", and says that the publisher authenticity is verified by "Company,
Inc.", but that the security was issued by a company that is not trusted. The security
certificate has not expired and is still valid. It cautions that "Joe User" asserts that this
content is safe and should only be installed or viewed if you trust "Joe User" to make that
assertion. The user is given the following options:

• Grant this session

• Deny

• Grant always

• View certificate

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 27 of 33

Section 9. SSL/TLS: Securing C/S communication

Overview
In this section, we'll examine the building blocks of the Secure Sockets Layer (and its
replacement, Transport Layer Security), the protocol used to authenticate the server to the
client. We'll offer a few code examples as illustrations.

What is Secure Sockets Layer/Transport Layer Security?
Secure Sockets Layer (SSL) and its replacement, Transport Layer Security (TLS), is a
protocol for establishing a secure communications channel between a client and a server. It
is also used to authenticate the server to the client and, less commonly, used to authenticate
the client to the server. It is usually seen in a browser application, where the lock at the
bottom of the browser window indicates SSL/TLS is in effect.

TLS 1.0 is the same as SSL 3.1.

SSL/TLS uses a hybrid of three of the cryptographic building blocks already discussed in this
tutorial, but all of this is transparent to the user. Here is a simplified version of the protocol:

• When a request is made to a site using SSL/TLS (usually with an https:// URL), a
certificate is sent from the server to the client. The client verifies the identify of the server
from this certificate using the installed public CA certificates, then checks that the IP name
(machine name) matches the machine that the client is connected to.

• The client generates some random info that can be used to generate a private key for the
conversation, known as a session key, and encrypts it with the server's public key and
sends it to the server. The server decrypts the message with its private key and uses the
random info to derive the same private session key as the client. The RSA public key
algorithm is usually used for this phase.

• The client and server then communicate using the private session key and a private key
algorithm, usually RC4. A message-authentication code, using yet another key, is used
to ensure the integrity of the message.

SSL/TLS code sample
In this example, we write an HTTPS daemon process using an SSL server socket that
returns an HTML stream when a browser connects to it. This example also shows how to
generate a machine certificate in a special keystore to support the SSL deployment.

In Java programming, the only thing that needs to be done is to use an SSL Server Socket
Factory instead of a Socket Factory, using lines like the following:

SSLServerSocketFacctory sslf =
(SSLServerSocketFactor)SSLServerSocketFactory.getDefault();

ServerSocket serverSocket = sslf.createServerSocket(PORT);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 33 Java security, Part 1: Crypto basics

The complete code example is listed below:

import java.io.*;
import java.net.*;
import javax.net.ssl.*;
//
// Example of an HTTPS server to illustrate SSL certificate and socket
public class HTTPSServerExample {

public static void main(String[] args) throws IOException {

//
// create an SSL socket using the factory and pick port 8080
SSLServerSocketFactory sslsf =
(SSLServerSocketFactory)SSLServerSocketFactory.getDefault();

ServerSocket ss = sslsf.createServerSocket(8080);
//
// loop forever
while (true) {
try {
//
// block waiting for client connection
Socket s = ss.accept();
System.out.println("Client connection made");
// get client request
BufferedReader in = new BufferedReader(
new InputStreamReader(s.getInputStream()));

System.out.println(in.readLine());
//
// make an HTML response
PrintWriter out = new PrintWriter(s.getOutputStream());
out.println("<HTML><HEAD><TITLE>HTTPS Server Example</TITLE>" +

"</HEAD><BODY><H1>Hello World!</H1></BODY></HTML>\n");
//
// Close the stream and socket
out.close();
s.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}
}

HTTPS server sample execution
In this example, we create an HTTPS server daemon that waits for a client browser
connection and returns "Hello, World!". The browser connects to this daemon via
https://localhost:8080.

We first create a machine certificate. The name must match the machine name of the
computer where the daemon runs; in this case, localhost. In addition, we cannot use the
same .keystore we have used in the past. We must create a separate keystore just for the
machine certificate. In this case, it has the name sslKeyStore.

D:\IBM>keytool -genkey -v -keyalg RSA -alias MachineCert

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 29 of 33

-keystore sslKeyStore
Enter keystore password: password
What is your first and last name?
[Unknown]: localhost

What is the name of your organizational unit?
[Unknown]: Security

What is the name of your organization?
[Unknown]: Company, Inc.

What is the name of your City or Locality?
[Unknown]: Machine Cert City

What is the name of your State or Province?
[Unknown]: MN

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=localhost, OU=Security, O="Company, Inc.", L=Machine Cert City,
ST=MN, C=US correct?
[no]: y

Generating 1,024 bit RSA key pair and self-signed certificate (MD5WithRSA)
for: CN=localhost, OU=Security, O="Company, Inc.", L=Machine Cert City,

ST=MN, C=US
Enter key password for <MachineCert>

(RETURN if same as keystore password):
[Saving sslKeyStore]

Then, we start the server daemon process specifying the special keystore and its password:

D:\IBM>java -Djavax.net.ssl.keyStore=sslKeyStore
-Djavax.net.ssl.keyStorePassword=password HTTPSServerExample

After waiting a few seconds, fire up a browser and point it to https://localhost:8080 and you
should be prompted on whether or not to trust the certificate. Selecting "yes" should display
"Hello World!", and clicking on the lock in Internet Explorer will give the certificate details.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 33 Java security, Part 1: Crypto basics

Section 10. Wrapup and resources

Summary
This tutorial introduced the major cryptographic building blocks that can be used to provide a
vast array of application security solutions. You've become familiar with such Java security
topics as:

• Built-in features that facilitate secure programming (no pointers, a bytecode verifier,
fine-grained control over resource access for both applets and applications, a large
number of library functions for all the major cryptographic building blocks, and SSL).

• Secure programming techniques (proper storage and deletion of passwords and
intelligent serialization).

• Features newly integrated in JDK 1.4 (JCE, JSSE, JAAS, JGSS, and CertPath API).

• Enriching, third-party security offerings.

And the following concepts:

• Message digests

• Message authentication codes

• Private key cryptography

• Public key cryptography

• Digital signatures

• Digital certificates

• Certification authorities and paths

• Code signing

• SSL/TLS

You should be well poised to explore Java security in more detail (see the Resources on
page 31 section) and to take the next tutorial,Java security, Part 2: Authentication and
authorization.

Resources
Downloads

• Download the complete source code and classes used in this tutorial,
javasecurity1-source.jar.

• See BouncyCastle (http://www.bouncycastle.org) for the third-party provider library used in
this tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 31 of 33

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
javasecurity1-source.jar
http://www.bouncycastle.org

Articles, tutorials, and other online resources

• Sun's Java Security Web site (http://java.sun.com/security) is the definitive source for Java
security.

• Read Brad Rubin's second tutorial in this series, "Java security, Part 2: Authentication and
authorization" (developerWorks, July 2002,
http://www-106.ibm.com/developerworks/education/r-jsec2.html).

• Michael Yuan demonstrates how to digitally sign and verify XML documents on wireless
devices using the Bouncy Castle Crypto APIs in his article "Securing your J2ME/MIDP
apps" (developerWorks, June 2002,
http://www-106.ibm.com/developerworks/library/j-midpds.html).

• Greg Travis offers a practical look at JSSE in his tutorial "Using JSSE for secure socket
communication" (developerWorks, April 2002,
http://www-106.ibm.com/developerworks/education/r-jsse.html).

Books

• For an overall discussion of Web security and Java technology, see Web Security, Privacy,
and Commerce, 2nd Edition (http://www.oreilly.com/catalog/websec2/), by Simson
Garfinkel and Gene Spafford, O'Reilly, 2002.

• If you want to focus more on Java security, see Professional Java Security
(http://www.amazon.com/exec/obidos/ASIN/1861004257/104-8739833-1347930), by Jess
Garms and Daniel Somerfield, Wrox Press, 2001.

• Another great resource for learning about Java security is Java Security
(http://www.amazon.com/exec/obidos/ASIN/0596001576), by Scott Oaks, O'Reilly &
Associates, 2001.

• Find out what everyone needs to know about security in order to survive and be
competitive in Secrets and Lies: Digital Security in a Networked World
(http://www.counterpane.com/sandl.html), by Bruce Schneier, 2000.

• Boasting new algorithms, more information on the Clipper Chip and key escrow, dozens of
new protocols, more information on PGP, detailed information on key management and
modes of operation, and new source code, this book should be a security winner: Applied
Cryptography, Second Edition (http://www.counterpane.com/applied.html), by Bruce
Schneier, 1995.

Additional resources

• The IBM Java Security Research page (http://www.research.ibm.com/javasec/) details
various security projects in the works.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 33 Java security, Part 1: Crypto basics

http://java.sun.com/security
http://java.sun.com/security
http://java.sun.com/security
http://java.sun.com/security
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/81DA2B4373FDFBA386256BF90046648A?OpenDocument
http://www-106.ibm.com/developerworks/java/library/j-midpds.html
http://www-106.ibm.com/developerworks/java/library/j-midpds.html
http://www-106.ibm.com/developerworks/java/library/j-midpds.html
http://www-106.ibm.com/developerworks/java/library/j-midpds.html
http://www-106.ibm.com/developerworks/java/library/j-midpds.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/96B42A25DD270CA886256BAA006351B4?OpenDocument
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.oreilly.com/catalog/websec2/
http://www.amazon.com/exec/obidos/ASIN/1861004257/104-8739833-1347930
http://www.amazon.com/exec/obidos/ASIN/1861004257/104-8739833-1347930
http://www.amazon.com/exec/obidos/ASIN/1861004257/104-8739833-1347930
http://www.amazon.com/exec/obidos/ASIN/0596001576
http://www.amazon.com/exec/obidos/ASIN/0596001576
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/sandl.html
http://www.counterpane.com/applied.html
http://www.counterpane.com/applied.html
http://www.counterpane.com/applied.html
http://www.counterpane.com/applied.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/javasec/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/javasec/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/javasec/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/javasec/&origin=j

• Visit the Tivoli Developer domain (http://www-106.ibm.com/developerworks/tivoli/) for help
in building and maintaining the security of your e-business.

• The developerWorks Security special topic
(http://www-106.ibm.com/developerworks/security/) offers developers hands-on technical
information covering the general topic of security.

• Participate in the developerWorks Java security forum hosted by Paul Abbott.

• You'll find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone (http://www-106.ibm.com/developerworks/java/).

• See the developerWorks tutorials page
(http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle) for a
complete listing of free Java technology-related tutorials from developerWorks.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java security, Part 1: Crypto basics Page 33 of 33

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-106.ibm.com/developerworks/tivoli/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-106.ibm.com/developerworks/tivoli/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-106.ibm.com/developerworks/tivoli/&origin=j
http://www-106.ibm.com/developerworks/security/
http://www-106.ibm.com/developerworks/security/
http://www-106.ibm.com/developerworks/security/
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=44
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=44
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=44
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tools, code samples, and installation requirements
	A note on the code examples
	About the author

	Java security programming concepts
	How the Java platform facilitates secure programming
	What are secure programming techniques?
	Security is integrated in JDK 1.4
	Security is enriched with third-party libraries
	Looking ahead

	Ensuring the integrity of a message
	Overview
	What is a message digest?
	Algorithms, classes, and methods
	Message digest code example
	Message digest sample execution
	Message authentication code example
	Message authentication sample execution

	Keeping a message confidential
	Overview
	What is private key cryptography?
	What is padding?
	Modes: Specifying how encryption works
	Algorithms, classes, and methods
	Private key cryptography code example
	Private key cryptography sample execution

	Secret messages with public keys
	Overview
	What is public key cryptography?
	Algorithms, classes, and methods
	Public key cryptography code example
	Public key cryptography sample execution

	Signatures without paper
	Overview
	What are digital signatures?
	Algorithms
	Digital signature code example: The hard way
	Sample execution
	Digital signature code example: The easy way
	Sample execution

	Proving you are who you are
	Overview
	What are digital certificates?
	Understanding keytool and keystore
	keytool example
	CertPath API

	Trusting the code
	Overview
	The concept of code signing
	Jarsigner tool
	Code signing example
	Code signing example execution

	SSL/TLS: Securing C/S communication
	Overview
	What is Secure Sockets Layer/Transport Layer Security?
	SSL/TLS code sample
	HTTPS server sample execution

	Wrapup and resources
	Summary
	Resources
	Feedback

