
Build your stock with J2ME

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2
2. Getting started .. 4
3. High-level user interface design 6
4. Low-level user interface design...................................... 16
5. Record management system... 22
6. J2ME networking ... 28
7. Server-side design ... 35
8. Overcome J2ME limitations .. 37
9. Wrap up.. 39

Build your stock with J2ME Page 1 of 40

Section 1. Introduction

J2ME tutorial overview
In this tutorial, we will build a typical Java 2 Platform, Micro Edition (J2ME) application, called
UniStocks, based on CLDC (Connected Limited Device Configuration) and MIDP (Mobile
Information Device Profile) APIs. As we build the application, we'll cover the following topics:

• MIDlet basics

• MIDP high-level user interface design

• MIDP low-level user interface design

• Record management system (RMS)

• J2ME networking and multithreading

• Server-side design

• Application optimization and deployment

• Overcoming J2ME limitations

About the author

Jackwind Li Guojie has been writing software professionally for many years. As leader
of the Jackwind Group, he provides software consulting and training servies in the
Asia-Pacific area. Currently, he is also pursuing research on soft computing at
Nanyang Technological Unversity, Singapore. You can contact Jackwind at
jackliguojie@hotmail.com.

About UniStocks
UniStocks is a stock application that enables the user to access and manage information of
any stock -- anywhere, anytime.

Like any stock application on your PC or on the Web, UniStocks lets the user:

• Add stocks (store stock symbols on a phone)

• Delete stock(s) (remove stock symbols)

• View live information of selected stocks, such as current high price, low price, volume, etc.

• View charts of historical data (one month, three months, six months, one year), price,
volume, and so forth.

UniStocks is based on a client-server architecture. The server will provide all required stock
information, such as live data and historical data.

Figures 1 through 3 show the main menu; the downloading status, and the stock historical

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 40 Build your stock with J2ME

mailto:jackliguojie@hotmail.comm

chart, respectively.

Figure 1: UniStocks main menu

Figure 2: UniStocks download status

Figure 3: UniStocks historical chart

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 3 of 40

Section 2. Getting started

Choose your development tools
Few IDE tools are available for J2ME. You should already be familiar with the J2ME Wireless
Toolkit (WTK). WTK lets you compile, package, deploy, and execute J2ME applications.
WTK is not a real IDE, because it lacks important features like editing and debugging.
However, it is easy to use, which is appealing to many developers.

Other tools, such as IBM VisualAge Micro Edition and Borland JBuilder Mobile Set 2.0, are
extensions of mature IDEs. They provide wizards and other tools to help you create J2ME
applications.

You should choose the right tools according to your needs. (See Resources on page 39 for
IDE links.) For this project, we'll use the text editor Emacs with WTK 1.04.

Code the MIDlet
The J2ME platform consists of a set of layers, on top of which lies MIDP. We develop J2ME
applications on top of MIDP; thus, the applications are called MIDlets. Every J2ME
application must extend the MIDlet class so the application management software can
control it.

Here is a blueprint of our MIDlet:

public class UniStock extends MIDlet implements CommandListener
{
Display display;

private List menu;
private Command commandSelect;
private Command commandExit;
...

public UniStock() { // The constructor.
...
// Data initialization.

// Read saved data from RMS.

// Create UI components and the first screen (menu).
}

public void startApp() { // Enter the active state.
// Display the first screen.
display.setCurrent(menu);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
...
// Clean up data streams, network, etc.
...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 40 Build your stock with J2ME

}

public void commandAction(Command c, Displayable s) {
notifyDestroyed();

}

// Other customized methods.
...

}

When the application management software invokes the startApp(), pauseApp(), or
destroyApp() method, the MIDlet's state changes. For example, when pauseApp() is
invoked, the MIDlet changes from an active to a paused state.

Because those methods signal state changes, they need to be lightweight in order to return
quickly. As you can see in the above code listing, we put most of the initialization process in
<init> and the constructor, rather than in startApp().

Warning: During application execution, startApp() and/or pauseApp() might be called
several times as the state changes. You should be careful never to place any initialization
code inside those two methods.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 5 of 40

Section 3. High-level user interface design

General design overview
GUI APIs are defined in MIDP rather than CLDC. UniStocks will use both high-level user
interface APIs (such as Alert, Form, and exclusive components like Command), as well as
low-level ones (such as Canvas).

Screen is the super class of all high-level interface APIs. Figure 4 shows a screen map of
UniStocks. Note that "Historical charts," with the gray background, uses the low-level API to
draw charts to the screen. The screen map does not show the intermediate-level screens,
such as alerts and error reporting screens.

Figure 4: UniStocks screen map

Avoid splash screens
What about a cool splash screen? I strongly recommend you don't display a splash screen.
Small devices have limited processor power. Displaying a splash screen will significantly
delay your application launch process. In addition, it will increase your final distribution file
size. (The limit of jar file size for some phones is as low as 30K!)

If you really want to display a splash screen, display it only when the user first launches the
MIDlet. Users will become frustrated if they must wait for your splash screen to display every
time.

In this application, we use a simple "About" alert to show the application's nature and license
information.

Screen navigation: The tree model
While developing my company's first few J2ME applications, my development team and I
found that it was difficult to navigate among screens. MIDP only provides the Display class
for one-screen display management. After some brainstorming, we created the tree model
shown in Figure 5, which is easily understood and adopted in J2ME development.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 40 Build your stock with J2ME

Figure 5: This image shows that a screen map is a typical tree.

As Figure 5 illustrates, our UniStocks screen map is actually a bidirectional tree. Each screen
in the map is a node, and the main menu is the root node.

In a tree structure like this, we can use the navigation techniques Depth-First-Search and
Breadth-First-Search. Further, the implementation will be easy.

Tree model implementation
A typical node implementation is as follows:

class Node {
Node parent;
Vector children;
boolean isRoot;

...
}

Similarly, we implemented the screen as a tree node:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

/**
* SubForm: A template of all subforms, 'node' in a tree.
*
* @version $2.1 2002-JAN-15$
* @author JackWind Li Guojie (http://www.JackWind.net)
*/

public class SubForm extends Form implements CommandListener
{
Command backCommand; // Back to the parent screen.
UniStock midlet; // The MIDlet.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 7 of 40

Displayable parent; // The parent screen.

/**
* Constructor - pass in the midlet object.
*/
public SubForm(String title, UniStock midlet, Displayable parent) {
super(title);
this.midlet = midlet;
this.parent = parent;

backCommand = new Command("Back", Command.BACK, 1);

addCommand(backCommand);
setCommandListener(this);

}

/**
* commandListener: Override this one in subclass!
* Call this method in subclass: super.commandAction(c, s)
*/
public void commandAction(Command c, Displayable s) {
if(c == backCommand) {
if(parent != null)
midlet.display.setCurrent(parent);

}
}

}

We don't keep a children list in the node because we usually create new child screens on the
fly. (Of course, you can keep a children list if you don't want to create child screens every
time.) When the user presses the Back command, the system simply displays its parent
screen. The child might make some changes on the parent screen, and then display its
parent screen after the Back button is pressed.

Using this tree model, we can easily create user-friendly J2ME applications. As an
alternative, you can look into another navigation model, called a stack-based framework,
described by John Muchow in Core J2ME Technology and MIDP. (See Resources on page 39
.)

A sample screen
The following code list is a simplified version of our "View Stock Details" form
implementation. The class FormView extends the tree node implementation SubForm.
FormView adds its own customized commands, methods, and so on. It also overrides the
commandAction() method for its customized command event-handling routine:

import javax.microedition.lcdui.*;

/**
* Form: Display view stock form.
*
* @version 1.0 2002-JUL-07
* @author JackWind Li Guojie (http://www.JackWind.net)
*/

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 40 Build your stock with J2ME

public class FormView extends SubForm
{
ChoiceGroup choiceStocks;
Command commandLive;
Command commandOneMonth;
Command commandThreeMonth;
Command commandSixMonth;
Command commandOneYear;

int mode; // 1 - Live info.
// 2 - One month.
// 3 - Three months.
// 4 - Six months.
// 5 - One year.

Stock s; // Selected stock.

StockLive sl;
StockHistory sh;

public FormView(String title, UniStock midlet, Displayable parent) {
super(title, midlet, parent);

commandLive = new Command("Live Info", Command.SCREEN, 1);
commandOneMonth = new Command("One m. chart", Command.SCREEN, 1);
commandThreeMonth = new Command("Three m. Chart", Command.SCREEN,

1);
commandSixMonth = new Command("Six m. Chart", Command.SCREEN, 1);
commandOneYear = new Command("One yr. Chart", Command.SCREEN, 1);

addCommand(commandLive);
addCommand(commandOneMonth);
addCommand(commandThreeMonth);
addCommand(commandSixMonth);
addCommand(commandOneYear);

choiceStocks = new ChoiceGroup("Select a stock: ",
Choice.EXCLUSIVE);

for(int i=0; i<midlet.stocks.size(); i++) {
if(UniStock.DEBUG)
UniStock.debug("Loading #" + i);

Stock s = (Stock)midlet.stocks.elementAt(i);
Exchange e = (Exchange)midlet.exchanges.elementAt((int)s.ex);
choiceStocks.append(s.code + " [" + e.code + "]", null);

}

append(choiceStocks);

}

public void commandAction(Command c, Displayable ds) {
super.commandAction(c, ds);

if(c == commandLive || c == commandOneMonth || c==
commandThreeMonth

|| c == commandSixMonth || c == commandOneYear)
{

if(c == commandLive)
mode = 1;

else if(c == commandOneMonth)
mode = 2;

else if(c == commandThreeMonth)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 9 of 40

mode = 3;
else if(c == commandSixMonth)
mode = 4;

else if(c == commandOneYear)
mode = 5;

if(choiceStocks == null || choiceStocks.getSelectedIndex() == -1)
{

midlet.reportError("Nothing selected to view!");
s = null;
return;

}else{
s =

(Stock)(midlet.stocks.elementAt(choiceStocks.getSelectedIndex()));
}

Download dl = new Download(this, midlet);

NextForm nextForm = new NextForm(c.getLabel(), midlet, this, dl);
midlet.display.setCurrent(nextForm);

Thread t = new Thread(dl);
dl.registerListener(nextForm);
t.start();

}

}

}

Concepts behind MVC and user interface delegation
The classic Model-View-Controller (MVC) design pattern was introduced in the SmallTalk
programming environment. The model maintains the data state in the application domain.
The view represents the model in graphical or nongraphical form. The controller receives the
external input and interprets it in order to update the model or view. However, sometimes
separating the view from the controller is difficult. Instead, developers combine them, calling
it a representation. This modified version of MVC is often called user interface delegation.

Why use MVC or user interface delegation? With MVC and UI delegation, you can adapt
your application painlessly. In a J2ME environment, MVC lets you do modular component
testing. You can fully test the business logic code before mixing it with the GUI part.

Using MVC/UI delegation
The following two code listings both try to add a new Stock object; however, they use
different approaches. The first one uses good MVC design. It clearly separates the
presentation from the model. Alternatively, the second one stuffs everything inside the
method.

If we want to add another attribute to the Stock class -- for example, company name -- the
Stock constructor needs one more parameter. We also need to check whether the user tries

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 40 Build your stock with J2ME

to add certain restricted stocks. For the MVC code, we simply modify the addStock()
method in UniStock. For the second listing, we must modify every code snippet that
contains the code for creating and/or adding stocks, which can be tedious:

// Called by certain events (controller), such as user input, etc.
public void process() {
if(stockOK) {
// Add stock here
if(nextForm != null) {
if(midlet.addStock(textCode.getString(),

(byte)choiceExchanges.getSelectedIndex(), temp))
{

nextForm.setStatus(true, "Stock added.");
}else{
nextForm.setStatus(false, "Stock found, but could not be

added.");
}

}

...
}

}

// Called by certain events (controller), like user input, etc.
public void process() {
if(stockOK) {
boolean added = false;
// Add stock here ...
if(nextForm != null) {

// Create a new stock.
Stock s = new Stock(textCode.getString(),

(byte)choiceExchanges.getSelectedIndex());

// Check for duplication.
if(midlet.stocks.indexOf(s) != -1) {
debug("Stock already in records!");

}else{
midlet.stocks.add(s);
added = true;

}

if(added) {
nextForm.setStatus(true, "Stock added.");

}else{
nextForm.setStatus(false, "Stock found, but could not be

added.");
}

...

}
}

What's wrong with Alert?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 11 of 40

Even for moderately sized applications, you need to use Alert to notify the user of any
action. However, occasionally you may encounter some problems; for example, the user
might be confused by the improper use of Alert:

// After the 'Delete' command is pressed ...
Alert alert = new Alert("Information",

"Are you sure you want to delete all the data? ", null, null);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);

delete_all_data();
System.out.println("Data deleted");
...

Some books use code similar to the above code to show their readers how to use Alert.
However, that code is wrong. When you press the Delete command, the above code will run.
During the execution, you might find that "Data deleted" is printed immediately after the
Alert displays (as shown here in Figure 6). If you press the Delete command
unintentionally, you cannot cancel or roll back deletion because the data has already been
deleted before you noticed it.

Figure 6: Deletion alert

Alert is misused in the above code. According to the MIDP Java API documentation, "The
intended use of Alert is to inform the user about errors and other exceptional conditions."
Therefore, we need a dialog here. In the next panel, I will present a flexible, reusable
Dialog class.

Solution: The Dialog class
Please note that Dialog is not a standard class in CLDC or MIDP. The developers at
JackWind Group created the Dialog class shown in the following listing:

/**
* FileName: Dialog.java
* Version: 1.0
* Create on: 2001-JUN-01
*
* All rights reserved by JackWind Group. (www.JackWind.net)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 40 Build your stock with J2ME

*/

import javax.microedition.lcdui.*;

/**
* Dialog: A class simulating dialog for UI.
*
* @version 1.0 2001-JUN-01
* @author JackWind Group (http://www.JackWind.net)
*/

class DialogListener {
public void onOK() {}
public void onYES() {}
public void onNO() {}
public void onCANCEL() {}
public void onCONFIRM() {}
// RETRY.
// ABORT.

}

public class Dialog extends Form implements CommandListener{
Display display;
DialogListener dll;

Displayable parent;

public static final int OK = 1;

public static final int YES = 2;
public static final int NO = 4;
public static final int CANCEL = 8;
public static final int CONFIRM = 16;

Command cmOK;
Command cmYES;
Command cmNO;
Command cmCANCEL;

Command cmCONFIRM;

StringItem text;

/**
* The constructor.
*@param title Form title, must not be null
* @param text Form text, must not be null
* @param mode Control commands. int > 0
* @param MIDlet Our midlet, must not be null
* @param DialogListener dll, can be null
* @param parent The parent form, must not be null
*/
public Dialog(String title, String text, int mode, MIDlet midlet,

DialogListener dll, Displayable parent) {
super(title);
this.dll = dll;
this.text = new StringItem(null, text);
this.display = Display.getDisplay(midlet);
this.parent = parent;

if((mode & OK) != 0) {
cmOK = new Command("OK", Command.SCREEN, 1);
addCommand(cmOK);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 13 of 40

}

if((mode & YES) != 0) {
cmYES = new Command("Yes", Command.SCREEN, 1);
addCommand(cmYES);

}

if((mode & NO) != 0) {
cmNO = new Command("No", Command.SCREEN, 1);
addCommand(cmNO);

}

if((mode & CANCEL) != 0) {
cmCANCEL = new Command("Cancel", Command.SCREEN, 1);
addCommand(cmCANCEL);

}

if((mode & CONFIRM) != 0) {
cmCONFIRM = new Command("Confirm", Command.SCREEN, 1);
addCommand(cmCONFIRM);

}

append(text);
setCommandListener(this);

}

public void commandAction(Command c, Displayable s) {
if(dll != null) {
if(c == cmOK)
dll.onOK();

else if(c == cmYES)
dll.onYES();

else if(c == cmNO)
dll.onNO();

else if(c == cmCANCEL)
dll.onCANCEL();

else if(c == cmCONFIRM)
dll.onCONFIRM();

}

midlet.display.setCurrent(parent);

}

}

Using Dialog
Using our Dialog class, we can rewrite the code from the "What's Wrong with Alert?"
section:

Dialog dl = new Dialog ("Confirmation,"
"Are you sure you want to delete all data?",
Dialog.CONFIRM | Dialog.CANCEL,
midlet,

new DialogListener() { // Anonymous inner class.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 40 Build your stock with J2ME

public void onCONFIRM() {
delete_all_data();
System.out.println("Data deleted");

}
// If cancelled, do nothing.

},
this

);

display.setCurrent(dl);

Now, when you press the Delete command, you will see the screen shown here in Figure 7.
You can confirm the deletion or simply cancel this action. Similarly, you can use this Dialog
to let the user answer simple questions with YES, NO, OK, and so on.

To create a new Dialog, we need a DialogListener to act in response to user input. In
our implementation, DialogListener is a class, not an interface. In this way, you simply
override any method necessary without implementing all the methods. In the above code, we
use an anonymous inner class as DialogListener, and override the onCONFIRM()
method.

Figure 7: Confirmation dialog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 15 of 40

Section 4. Low-level user interface design

What's next
In this section, we will build a Canvas to display stock price and volume charts.

After the user selects a stock symbol and historical period, the application will retrieve
historical data from the server. (I will discuss networking later.) Getting the necessary data,
the application will draw the actual charts onto the canvas (see on page below).

The user can view price and volume for every historical trading day by pressing the right
arrow to find the next day or the left arrow for the previous day. (See information about event
processing in subsequent panels) By pressing the up and down arrow, the user can zoom in
and zoom out (see Figure 9).

Figure 8: Stock chart canvas

Figure 9: Zoom in and out

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 40 Build your stock with J2ME

Low-level drawing
When creating a Canvas, we need to extend the Canvas class and override at least its
paint(Graphics g) method. By overriding the paint() method, we can draw the stock
chart:

protected void paint(Graphics g) {
// Clear background.
g.setColor(255, 255, 255);
g.fillRect(0, 0, screenH, screenV);

// Draw Strings - Price, volume, etc.
g.setColor(0, 0, 0);
g.setFont(font);
g.drawString("H: $"+UniStock.getString(sr.priceHigh) +

", L: $" + UniStock.getString(sr.priceLow),
1, 1, Graphics.TOP | Graphics.LEFT);

g.drawString("Volume: " + sr.volumn,
1, fontH + 2, Graphics.TOP | Graphics.LEFT);

// Draw the chart.

for(int i=left+1; i<=right; i++) {
// For each visible day (except the first day).

StockRecord current = (StockRecord)sh.vec.elementAt(i);

// Draw price chart.
// Multiplication first, then division to increase accuracy.
g.setColor(255, 51, 0); // Set color
g.setStrokeStyle(Graphics.SOLID);
g.drawLine(

startX + (i-1-left)*step,
startY + Y - (last.priceHigh-priceLowest)*Y/priceBase,
startX + (i-left)*step,
startY + Y - (current.priceHigh - priceLowest)*Y/priceBase

);

// Draw volume chart.

last = current;

} // End for loop.

}

The above code is our paint() method. Inside the method, we get a reference to the
Graphics object; thus, we can use it to do the actual drawing. These main drawing methods
are available in Graphics:

• drawArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

• drawChar(char character, int x, int y, int anchor)

• drawImage(Image img, int x, int y, int anchor)

• drawLine(int x1, int y1, int x2, int y2)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 17 of 40

• drawRect(int x, int y, int width, int height)

• drawString(String str, int x, int y, int anchor)

• fillArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

• fillRect(int x, int y, int width, int height)

• fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)

In UniStock, we use drawString() to draw price and volume for the selected day. Then we
draw the price and volume chart by concatenating small segments created by drawLine()
for each period.

Drawing and filling basics
Small devices have a limited screen or display area. Therefore, you should plan carefully
before you start coding. Otherwise, a slight drawing inaccuracy will ruin your user interface.
One common problem here is that people are often unclear about how filling and drawing
methods work.

The origin of the graphics coordinate system is at the upper left corner, with coordinates
increasing down and to the right, as Figures 10 and 11 illustrate. The arguments required by
drawing and filling methods define a coordinate path (shown in the gray spots in the figures)
instead of pixel positions. This can sometimes be confusing.

Figure 10: Drawing a rectangle -- drawRect (2, 2, 4, 3)

Figure 11: Filling a rectangle -- fillRect(2, 2, 4, 3)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 40 Build your stock with J2ME

Figure 10 is the screen view after invoking the method drawRect(2, 2, 4, 3) (which
draws a rectangle starting with (2,2), width = 4, height = 3). Notice in Figure 10 that
drawRect() draws an extra row of pixels on the rectangle's right and bottom sides.

Figure 11's filled rectangle is the result of fillRect(2, 2, 4, 3). Unlike drawRect(),
fillRect() fills the specified path's interior.

Here is the code for drawing a border rectangle for a canvas:

g.drawRect(0, 0, getWidth()-1, getHeight()-1);

Here is the code for filling a canvas' full screen:

g.fillRect(0, 0, getWidth(), getHeight());

Low-level event processing
Both Screen and Canvas are direct subclasses of Displayable. We can create
commands and add them to Screen or Canvas, and then set a CommonListener for them.
This is how high-level event processing works.

But Canvas can also handle low-level events. For low-level events -- such as game action,
key events, and pointer events -- we don't need to create and register listeners, because
Canvas has direct methods to handle them:

• showNotify()

• hideNotify()

• keyPressed()

• keyRepeated()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 19 of 40

• keyReleased()

• pointerPressed()

• pointerDragged()

• pointerReleased()

• paint()

The following is our event-handling routine in StockCanvas:

protected void keyPressed(int keyCode) {
switch(getGameAction(keyCode)) {
case RIGHT:
cursor ++;
...
repaint();
break;

case LEFT:
cursor --;
...

repaint();
break;

case UP:
zoom(true);
repaint();
break;

case DOWN:
zoom(false);
repaint();
break;

}// End of switch.
}

Once the user presses a key, the keyPressed() method will be called with the pressed key
code as the only parameter.

Why do we need getGameAction() to process the keyCode? This way, we can ensure
our application's portability. getGameAction() will translate a key code into a game action.
Those game actions should be available on all J2ME-supported devices. However, a hand
phone might have different code settings with a two-way pager. So we need to translate
those settings with getGameAction().

Tip: Use game actions, such as UP, RIGHT, and LEFT, to ensure application portability.

Double buffering
Occasionally, you find that canvases flicker during repainting. This flickering is due to the fact
that the Canvas class must clear the previous screen (background) before it invokes the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 40 Build your stock with J2ME

paint() method. Erasing Canvas's background results in flickering, which we can eliminate
using a well-known technique called double buffering.

Double buffering prepares the next Canvas content to display in an offScreen() buffer,
and then copies the complete display content to the screen. This way, we avoid erasing and
flickering.

The following is our rewritten code for paint():

Image offScreen; // For double buffering.

protected void paint(Graphics g) {
Graphics ig = null;

if(isDoubleBuffered()) { // If the implementation supports it..
ig = g;

}else{
if(offScreen == null)
offScreen = Image.createImage(screenH, screenV);

ig = offScreen.getGraphics();
}

ig.setColor(255, 255, 255); // Clear with white background.
ig.fillRect(0, 0, screenH, screenV);

... // Drawing, filling with ig.

if(isDoubleBuffered())
g.drawImage(offScreen, 0, 0, Graphics.TOP|Graphics.LEFT);

}

If the implementation supports double buffering, we don't need to repeat it. Thus, we must
check it before double buffering in the paint() method.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 21 of 40

Section 5. Record management system

Store data with RMS
MIDP provides us with the Record Management System (RMS), a records-based persistent
storage system. With RMS, you can persistently store data and retrieve it later. In UniStocks,
we use RMS to store stock symbols.

RecordStore, which consists of a record collection, is the only class in the
javax.microedition.rms package. A record is a byte array (byte []) of data. RMS
doesn't support data types for records, so you have to manipulate them yourself.

Here are some RMS facts:
• The naming space for RecordStore is controlled at MIDlet-suite granularity

• MIDlets within the same MIDlet suite can share RecordStores

• MIDlets from different MIDlet suites cannot share RecordStores

• When a MIDlet suite is removed, all RecordStores associated with it are removed too.

Warning: RMS does not provide any locking operations. RMS ensures that all individual
RecordStore operations are atomic, synchronous, and serialized. However, if a MIDlet
uses multiple threads to access a RecordStore, the MIDlet must coordinate this access,
otherwise unintended consequences may result.

Understanding RecordStore
Records inside a RecordStore are uniquely identified by their recordID, which is an
integer value. The first record that RecordStore creates will have a recordID equal to 1.
Each subsequent record added to RecordStore will have a recordID one greater than the
last added record.

Developers commonly mistake a RecordStore to be a Vector whose index starts from 1
instead of 0. That is wrong, which you may not realize unless you've worked on RMS
extensively.

For example, Figure 12 shows the internal state transition of our RecordStore. State 2
does not contain any record with a recordID equal to 2 or 3. However, its 'Next ID' does not
change. As you can see clearly from the state representations below, RecordStore is not a
Vector. In the following panels, you will learn how to correctly add and retrieve records.

Figure 12: The RecordStore's internal state transition

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 40 Build your stock with J2ME

Controlling RecordStores
Open and create a RecordStore:

The code listing below tries to open a RecordStore. If the RecordStore identified by its
name does not exist, RMS will try to create it. The RecordStore name should not exceed
32 characters. You should also try to avoid using duplicated names while creating
RecordStores. The openRecordStore() method throws several exceptions, so we need
to manage exception handling:

/**
* Open a record store.
*/
private RecordStore openRecStore(String name) {
try {
// Open the record store, create it if it does not exist.
return RecordStore.openRecordStore(name, true);

}catch(Exception e) {
reportError("Fail to open RS: " + name);
return null;

}
}

Close a RecordStore:

If you don't need to use a RecordStore anymore, you can simply close it to release the
resources it holds:

// Clean up.
try {
...
rsStockList.closeRecordStore();

}catch(Exception e) {
// reportError("Clean-up error:" + e.toString());

}

Erase a RecordStore:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 23 of 40

Warning: When you delete a RecordStore, you erase its associated records!

public void eraseRecordStore() {
try {
debug("Deleting record store ...");

RecordStore.deleteRecordStore(REC_STOCKLIST);
}catch(Exception e) {
if(DEBUG)
debug("Could not delete stores: " + e.toString());

}
}

Create records
As I mentioned earlier, a record is a byte array. However, we usually store data of types
String, int, and so on in records. Here we can use DataInputStream and
ByteArrayInputStream to pack data into records:

private ByteArrayInputStream byteArrayInput;
private DataInputStream dataInput;

byte[] recData = new byte[200]; // buffer

byteArrayInput = new ByteArrayInputStream(recData);
dataInput = new DataInputStream(byteArrayInput);

...

/**
* Write a new stock record.
*/

private int writeStock(Stock s) {
try{
byteArrayOutput.reset();

dataOutput.writeUTF(s.code);
dataOutput.writeByte(s.ex);

byte[] record = byteArrayOutput.toByteArray();

// Add to record store.
return rsStockList.addRecord(record, 0, record.length);

}catch(Exception e) {
reportError("Failed to add stock to RMS: " + e.toString());
if(DEBUG)
e.printStackTrace();

return -1;
}

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 40 Build your stock with J2ME

In the code listing above, method rsStockList.addRecord(record, 0,
record.length) has been invoked to create a new record in RecordStore. The
recordID is returned. We can use the following code to check whether or not a new record
has been created successfully:

/**
* Add a new stock.
*/
boolean addStock(String code, byte ex, String temp) {
Stock s = new Stock(code, ex);

int id = writeStock(s);
if(id > 0) {
s.rs_id = id;
stocks.addElement(s);
return true;

}else{
return false;

}
}

Retrieve data from RMS
In previous panels, I have shown that RecordStore behaves differently than a Vector.
You should never assume that a record with a certain recordID, such as 0, always exists.
You should use RecordEnumeration to retrieve records. The RecordEnumeration class
represents a bidirectional record store Record enumerator. RecordEnumeration logically
maintains a sequence of recordIDs of a RecordStore's records. After obtaining
recordIDs from RecordEnumeration, we can use this method to retrieve the byte array
content:

public int getRecord(int recordId, byte[] buffer, int offset)
throws RecordStoreNotOpenException,

InvalidRecordIDException,
RecordStoreException

In the previous panel, we used DataInputStream and ByteArrayInputStream to pack
data into records. Similarly, we can use DataOutputStream and
ByteArrayOutputStream to retrieve data from records. However, we reverse the order:

private ByteArrayOutputStream byteArrayOutput;
private DataOutputStream dataOutput;

byteArrayOutput = new ByteArrayOutputStream();
dataOutput = new DataOutputStream(byteArrayOutput);

/**
* Load stock from RMS.
* Should be called exactly once in the application cycle.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 25 of 40

*/
private void readStock() {
stocks = new Vector();

try {
int total = rsStockList.getNumRecords();
if(total == 0) // No record..
return;

RecordEnumeration re = rsStockList.enumerateRecords(null, null,
false);

byteArrayInput.reset();
for(int i=0; i<total; i++) {
int id = re.nextRecordId();
if(DEBUG)
debug("Reading " + (i+1) + " of total " + total + " id = " +

id);

rsStockList.getRecord(id, recData, 0);
Stock s = new Stock (

dataInput.readUTF(), // full name - String
dataInput.readByte() // num - byte
););

s.rs_id = id; // Keep a copy of recordID.

stocks.addElement (s);

byteArrayInput.reset();
}

}catch(Exception e) {
if(DEBUG)
e.printStackTrace();

}
}

Tip: Always keep a copy of recordIDs after loading data from the records. Those
recordIDs will be useful if you need to modify or delete records later.

Delete and modify records
You can easily delete a record if you know its recordID:

eraseStock(((Stock)stocks.elementAt(i)).rs_id)) ;

/*
* Erase a record.
* @param i recordID
*/
private boolean eraseStock(int i) {
try {
rsStockList.deleteRecord(i);

}catch(Exception e) {
reportError(e.toString());
return false;

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 40 Build your stock with J2ME

return true;
}

Modifying a record is similar to creating a new record. Instead of creating a new record, we
overwrite an existing record. Referring to the code listing in the "Create Records" panel, we
change rsStockList.addRecord(record, 0, record.length); into
rsStockList.setRecord(recordID, record, 0, record.length).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 27 of 40

Section 6. J2ME networking

Make the connection
CLDC provides a generic connection framework that we can use to send and retrieve data
from the Web. In addition, MIDP provides the HttpConnection interface, while the MIDP
specification requires that implementations support at least the HTTP 1.1 protocol. Thus, we
can use the HttpConnection to query a Web server and retrieve stock information for
UniStocks.

Using HttpConnection
HTTP is a request-response protocol in which the request parameters must be set before the
request is sent. In UniStocks, we use the following code to retrieve a stock's live and
historical data:

// private void getInfo() throws Exception:

HttpConnection http = null;
InputStream is = null;
boolean ret = false;

// Form URL
if(formAdd != null) {
URL = baseURL + "?E=" + formAdd.choiceExchanges.getSelectedIndex() +

"&S=" + formAdd.textCode.getString() + "&T=0";
}else if(formView != null && formView.s != null) {
// Create view baseURL....
...

}

if(UniStock.DEBUG)
UniStock.debug("Connecting to: " + URL);

try{
http = (HttpConnection) Connector.open(URL);
http.setRequestMethod(HttpConnection.GET);
if(hasListener)

dl.setProgress(1, 10);

// Query the server and try to retrieve the response
is = http.openInputStream();
if(hasListener)
dl.setProgress(2, 10);

String str; // Temp buffer.
int length = (int) http.getLength();
if(hasListener)
dl.setProgress(3, 10);

if(length != -1) { // Length available.
byte data[] = new byte[length];
is.read(data);
str = new String(data);

}else{ // Length not available.
ByteArrayOutputStream bs = new ByteArrayOutputStream();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 40 Build your stock with J2ME

int ch;
while((ch = is.read()) != -1)
bs.write(ch);

str = new String(bs.toByteArray());

bs.close();
}

if(UniStock.DEBUG)
UniStock.debug("Got Data:>" + str + "<");

// String downloaded.....
// Process string here.
...

if(hasListener)
dl.setProgress(10, 10);

// Alert the user.
// AlertType.INFO.playSound(midlet.display);

} catch (IOException e) {
if(midlet.DEBUG)
midlet.debug("Downloading error: " + e.toString());

if(formAdd != null) {
formAdd.stockOK = false;

}else if(formView != null) {
}

} finally {
if(formAdd != null)
formAdd.process();

if(formView != null)
; // Do something.

/// Clean up.
if(is != null)
is.close();

if(http != null)
http.close();

if(dl != null)
dl.onFinish();

}

The connection exists in one of three states:

1. Setup: In this state, the connection has not been made to the server. http =
(HttpConnection) Connector.open(URL) only creates an HttpConnection,
which is not yet connected.

2. Connected: After all necessary headers have been set, invoking
http.openInputStream() will result in a server connection. Request parameters are
sent and the response is expected. Once the application downloads, the connection may
move to the next state.

3. Closed: The connection has been closed and the methods will throw an IOException if

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 29 of 40

called. In our case, we close all the data streams and connections before exiting our
customized download method.

Using threads with HttpConnection
Nearly all J2ME introductory books demonstrate some primitive HttpConnection
examples. Without providing visual feedback during a network connection, you leave the
user waiting, staring at a frozen screen (and today's slow wireless networks make the
situation worse). Consumer electronic users normally have much higher expectations than
desktop users.

Therefore, in UniStocks, we use multithreading to tackle this problem. After pressing a key or
command for download, the user will see a screen, as illustrated by on page , and survey
the progress through the gauge. If he changes his mind, he can simply press Cancel and
return to the previous screen. After data downloads, the user will see the chart screen,
shown in Figure 14 (repeated here from Figure 8). This way, everything runs or stops
gracefully. I will show a detailed implementation in the next panel.

Figure 13: Downloading screen

Figure 14: Stock chart canvas

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 40 Build your stock with J2ME

Tip: Use a gauge rather than an animated picture to display progress.

Implementation multithreading with connection
We have two major goals: Show the user connection progress, and give the user control.
When the user presses the Download command, the system will create and start a new
thread for download. At the same time, the download screen is created and displayed to the
user:

if(c == commandOneMonth) {
mode = 1;
...

Download dl = new Download(this, midlet);

// Download screen.
NextForm nextForm = new NextForm(c.getLabel(), midlet, this, dl);
midlet.display.setCurrent(nextForm);

Thread t = new Thread(dl);
dl.registerListener(nextForm);
t.start();

}

If the user presses Cancel while downloading, downloading should stop immediately.

if(c == commandCancel && (! finished)) {
if(download != null)

download.setInterrupted();

midlet.display.setCurrent(parent);
}

For our implementation, we'll use an interruption technique. In our getInfo() method, we

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 31 of 40

frequently check whether the downloading thread has been interrupted. If a thread has been
interrupted, InterruptedException is thrown and the run() method catches this
interruption and the thread exits.

You can use another technique: Close the connection when Cancel is pressed. Once the
connection is closed, Connection methods will throw an IOException if called. However,
any streams created from connection are still valid even if the connection has been closed.

My development team and I have found that the first interruption technique performs better.

The Download class
In the last panel, I briefly discussed the techniques for graceful multithreading. The code list
below provides a detailed implementation. Here is the code for the Download class:

public class Download implements Runnable
{
private UniStock midlet;
private String baseURL; // Retrieve URL from JAD file.
private String URL;

private boolean interrupted;

// For a Class object, only one of the following
// objects is not null.
private FormAdd formAdd;
private FormView formView;

// We only allow one download listener so far.
DownloadListener dl;
boolean hasListener;

public Download(UniStock midlet) {
this.midlet = midlet;
baseURL = midlet.getAppProperty(midlet.URL_KEY);

}

...

/**
* Thread starts from here!
*/
public void run() {
try {
getInfo();

}catch(Exception e) {
if(midlet.DEBUG)
midlet.debug("Exception caught: " + e.toString());

}
}

public void setInterrupted() {
interrupted = true;
if(midlet.DEBUG)
midlet.debug("Interrupted!");

}

public boolean interrupted() {

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 40 Build your stock with J2ME

return interrupted;
}

/**
* Do the real work here.
*/
private void getInfo() throws Exception {
HttpConnection http = null;
InputStream is = null;
boolean ret = false;

if(formAdd != null) {
URL = baseURL + "?E=" +

formAdd.choiceExchanges.getSelectedIndex() +
"&S=" + formAdd.textCode.getString() + "&T=0";

}else if(formView != null && formView.s != null) {
// Create view baseURL....
...

}

if(UniStock.DEBUG)
UniStock.debug("Connecting to: " + URL);

try{
http = (HttpConnection) Connector.open(URL);
http.setRequestMethod(HttpConnection.GET);
if(hasListener)
dl.setProgress(1, 10);

if(interrupted)
throw new InterruptedException();

is = http.openInputStream();
if(hasListener)
dl.setProgress(2, 10);

if(UniStock.DEBUG)
UniStock.debug("Connecting to: " + URL);

String str; // Temp buffer.
int length = (int) http.getLength();
if(hasListener)
dl.setProgress(3, 10);

if(interrupted)
throw new InterruptedException();

if(length != -1) { // Length valid.
byte data[] = new byte[length];
is.read(data);
str = new String(data);

}else{ // Length not available.
ByteArrayOutputStream bs = new ByteArrayOutputStream();

int ch;
while((ch = is.read()) != -1)

bs.write(ch);

str = new String(bs.toByteArray());
bs.close();

}

if(interrupted)
throw new InterruptedException();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 33 of 40

if(UniStock.DEBUG)
UniStock.debug("Got Data:>" + str + "<");

// String downloaded.....
// Process data here.
...

if(hasListener)
dl.setProgress(10, 10);

// Alert the user.
// AlertType.INFO.playSound(midlet.display);

} catch (IOException e) {
if(midlet.DEBUG)
midlet.debug("Downloading error: " + e.toString());

if(formAdd != null) {
formAdd.stockOK = false;

}else if(formView != null) {

}
} finally {
if(formAdd != null)
formAdd.process();

if(formView != null)
; // Do something.

/// Clean up.
if(is != null)
is.close();

if(http != null)
http.close();

if(dl != null)

dl.onFinish();
}

} // End function getInfo();

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 40 Build your stock with J2ME

Section 7. Server-side design

Consider the server side
The UniStocks application is based on a client-server architecture. (The MIDlet is the client
side.) In previous sections, we have designed the client part. This section focuses on the
server side. Before we create a server-side program, we must carefully plan what we should
put on the server side, and what we should leave on the client side.

Some advantages of server-side computing are:
• Great processor power

• High-speed connection

• Flexible computing choices (languages, platforms, etc.)

Take advantage of the server side
Now that we know some advantages of server-side programs, how can we utilize them to
create our own server-side programs? The goal is to improve the whole application's
performance, on the server side and the client side. To help us overcome the limitations of
J2ME and small devices, server-side programs can:

• Move the heavy computing part to the server side

• Do floating point computation on the server side

• Preprocess information on the server side to improve performance

• Overcome other J2ME limitations, such as creating pictures

• Reduce upgrade cost: One upgrade on the server side versus an upgrade of every
software suite on the client side

Collecting information
The server side provides us with stock information. The best way to get that stock data is
from a fast database; we can then send the data to the client. However, we usually don't
have such a convenient database to access. Our solution here is to parse the Yahoo!
Finance Web pages, which provide stock information from major exchanges, and then
forward the formatted data to the client side. You can easily add your regional exchanges in
the same way.

You may directly process the Web pages on the client side. However, once the Web pages
change their format, you have to update all installed MIDlets. If you later have a faster way to
access the stock data, you could simply update the server side only.

Tip: You are not limited to use Java language in server-side programming. Since the client
side does not care about the server-side implementation, you can use your favorite script
languages, such as Perl, ColdFusion, and so forth.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 35 of 40

Processing and delivery
If you supply a valid stock symbol, the Yahoo! Finance server will return the following live
data:

Symbol Current Price, Date, Time, Change Open High Low Volume
"IBM", 76.50, "8/15/2002", "4:00pm", +1.58, 75.40,76.71,74.60, 9269600

If the MIDlet requests a certain stock's live information, it must supply the stock's symbol to
query the server. The server then queries the Yahoo! Finance server to get information. The
server should return the following information to the MIDlet:

• Status: Success or failure (1 for success, 0 for failure)

• Any data if applicable

Why do you need a status byte? When you surf the Web, you may experience the following
problems:

• HTTP gateway timeout

• Web server too busy

• HTTP internal error

• Script running timeout

Even if the Web server is O.K. and your scripts are correct, the user might still encounter the
above problems due to multiple gateways between the client and the Web server. Using a
status byte, we can check whether or not the data received by the client is valid. If the data is
not valid, we simply discard it. By doing this, we also reduce parsing errors. Here is the
sample output (live data):

[Status * last price * price change * open price * high * low * volume]
1 * 73200 *1020 *73750 *73990 *73070*4586500*

Similarly, the server could retrieve the historical data from Yahoo! Finance and send it to the
client. Here is the sample output (historical data):

[status * year-month-day price high price low volume *]
1 * 2-9-6 73990 73070 4586500* ...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 40 Build your stock with J2ME

Section 8. Overcome J2ME limitations

Floating point computation
J2ME does not support floating point computation. In UniStocks, we need floating point
support for stock prices and so forth. To solve this problem, we use the following technique:
When making floating point computations, we multiply the floating point numbers by 1000,
trim them to integers, and then we calculate. After the computation, we might get a result like
12200, which stands for stock price 12.2. To display it correctly, we process a string using
the getString() method in the UniStock class:

/**
* getString: Form a String from a big integer.
* We assume the integer has been multiplied by 1000.
*/
public static final String getString(int i, boolean trimZero, boolean
isPositive) {
if(isPositive && i < 0) {
return " N/A";

}

if(i==0) return "0";
boolean neg = (i > 0 ? false : true);
String str= Integer.toString(i);
if(neg) {
i = -i; // Make it positive first.
str = str.substring(1);

}

if(i < 10) { // Like 9.
str = "0.00" + str;

}else if(i < 100) { // Like 98.
str = "0.0" + str;

}else if(i < 1000) { // Like 450.
str = "0." + str;

}else{ // Like 10900.
str = Integer.toString(i);
str = str.substring(0, str.length()-3) + "." +

str.substring(str.length()-3);
}

if(neg)
str = "-" + str;

if(trimZero) { // Trim extra zeros
int dotP = str.indexOf('.');
int pos = -1;
if(dotP < 0) // if no '.' is found.
return str;

for(pos = str.length()-1; pos >= dotP; pos --)
if(str.charAt(pos) != '0')
break;

if(pos == dotP)
// If nothing is left behind '.', remove '.' too.
pos -= 1;

return str.substring(0, pos+1);
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 37 of 40

return str;

}

Hardcoding technique
My development team and I developed a shooting game recently. During development, my
colleagues complained that J2ME has no sin, cos, or tg methods. Without knowing those sin
and cos values, shooting would be uncontrollable. Finally, we identified that we only had 15
different angles, so we hardcoded their sin and cos values into the program. You could use
this hardcoding technique to solve similar problems.

The MIDlet suite application descriptor file
The application management software needs the JAD file to obtain information needed to
manage resources during MIDlet execution.

If you use the WTK, you can see your JAD file's attributes by pressing the Settings button.
The first tab displays the required attributes, some of which you need to modify:

• MIDlet-Name: The name of MIDlet suite

• MIDlet-Vendor: The default value is Sun Microsystems; change it to your company name

• MIDlet-Version: The default value is 1.0; change it to the application's version

In UniStocks, we create a user-defined attribute: INFO_PROVIDER_URL (key). This attribute
specifies the stock information provider's URL (value):
http://www.jackwind.net/resources/pj2me/StockInfoProvider.php. In our program, we use the
following code to retrieve this value:

static final String URL_KEY = "INFO_PROVIDER_URL";

public Download(UniStock midlet) {
this.midlet = midlet;
baseURL = midlet.getAppProperty(midlet.URL_KEY);

}

If you installed the StockInfoProvider servlet on your Web server, you may want to set
this URL pointing to the servlet's exact address.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 40 Build your stock with J2ME

Section 9. Wrap up

What we covered
In this tutorial, we have covered almost every aspect of J2ME by developing a typical
application -- UniStocks.

You received great hands-on experience in MIDLet basics, high-level user interface design,
low-level user interface design, persistent storage mechanisms, J2ME networking, and
server-side design, among other areas. In addition, I presented various frameworks and
techniques that you can use to develop your own J2ME applications with ease and
confidence.

Source/binary code configuration
1. Download pj2me.zip from http://www.jackwind.net/resources/pj2me.

2. Unzip pj2me.zip to a directory. Read carefully the license in license.txt. The
UniStocks folder contains the MIDlet client source code and resources; the jackwind
folder contains server-side code (the servlet).

3. Run UniStocks. Copy the UniStocks folder to WTK's apps directory, and UniStocks
should appear in your project list of WTK ('Open Project ...'). Open UniStocks and run it.
The default stock provider is
http://www.jackwind.net/resources/pj2me/StockInfoProvider.php, so you should configure
the proxy setting before connecting to our server.

4. Set up your own stock provider (optional). First configure your proxy host and proxy port in
file StockInfoProvider.java (inside the jackwind folder). Compile source file and
install the servlet. For details, please refer to README.txt under jackwind/WEB-INF.
Set the UniStocks JAD file's user-defined attribute INFO_PROVIDER_URL to your servlet
URL; for example:
http://127.0.0.1:8080/jackwind/servlet/StockInfoProvider

Resources
• Download the UniStocks binary and source from http://www.jackwind.net.

• Download the Java 2 Platform, Micro Edition, Wireless Toolkit.

• Create your J2ME application with IBM VisualAge Micro Edition.

• Check out Borland JBuilder Mobile Set 2.0 as an IDE alternative.

• Sun One Studio 4.0 EA Mobile Edition is a free, feature-rich IDE.

• Visit Sun's wireless developer homepage.

• View JSR 30: J2ME Connected, Limited Device Configuration.

• View JSR 37: Mobile Information Device Profile for the J2ME Platform.

• To know more about multithreading with Java, read Java Thread Programming, David M.
Geary (Sams, 1999).

• To know more about patterns, read Design Patterns: Elements of Reusable
Object-Oriented Software, Richard Helm, et al. (Addison-Wesley, 1994).

• A must-read for every user interface designer: The Design of Everyday Things, Donald

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build your stock with J2ME Page 39 of 40

http://www.jackwind.net/resources/pj2me
http://www.jackwind.net/resources/pj2me
http://java.sun.com/products/j2mewtoolkit/
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://wireless.java.sun.com/
http://www.jcp.org/jsr/detail/30.jsp
http://www.jcp.org/jsr/detail/37.jsp
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152

Norm (MIT Press, 1998).

• For more information on the stack-based framework, read John Muchow's Core J2ME
Technology and MIDP (Prentice Hall/Sun Microsystems Press, 2001).

• For more information, visit Wireless zone on IBM developerWorks.

• Visit the author's Web site http://www.jackwind.net for more J2ME resources and services.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 40 Build your stock with J2ME

http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://www-106.ibm.com/developerworks/wireless/
http://www-106.ibm.com/developerworks/wireless/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www.jackwind.net/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	J2ME tutorial overview
	About the author
	About UniStocks

	Getting started
	Choose your development tools
	Code the MIDlet

	High-level user interface design
	General design overview
	Avoid splash screens
	Screen navigation: The tree model
	Tree model implementation
	A sample screen
	Concepts behind MVC and user interface delegation
	Using MVC/UI delegation
	What's wrong with Alert?
	Solution: The Dialog class
	Using Dialog

	Low-level user interface design
	What's next
	Low-level drawing
	Drawing and filling basics
	Low-level event processing
	Double buffering

	Record management system
	Store data with RMS
	Understanding RecordStore
	Controlling RecordStores
	Create records
	Retrieve data from RMS
	Delete and modify records

	J2ME networking
	Make the connection
	Using HttpConnection
	Using threads with HttpConnection
	Implementation multithreading with connection
	The Download class

	Server-side design
	Consider the server side
	Take advantage of the server side
	Collecting information
	Processing and delivery

	Overcome J2ME limitations
	Floating point computation
	Hardcoding technique
	The MIDlet suite application descriptor file

	Wrap up
	What we covered
	Source/binary code configuration
	Resources
	Feedback

