Build your stock with J2ZME

Presented by developerWorks, your source for great tutorials

I bm conl devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. INtrOdUCTION 2
2. Getting startedo 4
3. High-level user interface design ..., 6
4. Low-level user interface design.............oooeiiiiiiiiiiiinnnns 16
5. Record management SyStem..........uvviiiiiiiiiiiieeeeaeeeannnnn, 22
6. J2ZME NetWOrKING . ..o e, 28
7. Server-side desSignoooi i 35
8. Overcome J2ZME IImitationsccooevvviiiii i, 37
S T VA = T o 1 o 39

Build your stock with J22ME Page 1 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 1. Introduction

J2ME tutorial overview

In this tutorial, we will build a typical Java 2 Platform, Micro Edition (J2ME) application, called
UniStocks, based on CLDC (Connected Limited Device Configuration) and MIDP (Mobile
Information Device Profile) APIs. As we build the application, we'll cover the following topics:

* MiIDlet basics

« MIDP high-level user interface design

* MIDP low-level user interface design

» Record management system (RMS)

» J2ME networking and multithreading

» Server-side design

» Application optimization and deployment
e Overcoming J2ME limitations

About the author

Jackwind Li Guojie has been writing software professionally for many years. As leader
of the Jackwind Group, he provides software consulting and training servies in the
Asia-Pacific area. Currently, he is also pursuing research on soft computing at
Nanyang Technological Unversity, Singapore. You can contact Jackwind at
jackliguojie@hotmail.com.

About UniStocks

UniStocks is a stock application that enables the user to access and manage information of
any stock -- anywhere, anytime.

Like any stock application on your PC or on the Web, UniStocks lets the user:

« Add stocks (store stock symbols on a phone)
» Delete stock(s) (remove stock symbols)
» View live information of selected stocks, such as current high price, low price, volume, etc.

» View charts of historical data (one month, three months, six months, one year), price,
volume, and so forth.

UniStocks is based on a client-server architecture. The server will provide all required stock
information, such as live data and historical data.

Figures 1 through 3 show the main menu; the downloading status, and the stock historical

Page 2 of 40 Build your stock with J22ME

mailto:jackliguojie@hotmail.comm

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

chart, respectively.

Figure 1: UniStocks main menu

BB 2.d Mew Stks
Eiewy Stk Details
HDelete Stacks
Help

Gk About

Exit =elect

Figure 2: UniStocks download status

Three m. Chart

Dovvnload Progress

() UTCET

|Can|::el

Figure 3: UniStocks historical chart

F il B
H: $59.25, L F67r.15

wilume: 10939300

Build your stock with J22ME Page 3 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 2. Getting started

Choose your development tools

Few IDE tools are available for J2ME. You should already be familiar with the J2ME Wireless
Toolkit (WTK). WTK lets you compile, package, deploy, and execute J2ME applications.
WTK is not a real IDE, because it lacks important features like editing and debugging.
However, it is easy to use, which is appealing to many developers.

Other tools, such as IBM VisualAge Micro Edition and Borland JBuilder Mobile Set 2.0, are
extensions of mature IDEs. They provide wizards and other tools to help you create J2ME
applications.

You should choose the right tools according to your needs. (See Resources on page 39 for
IDE links.) For this project, we'll use the text editor Emacs with WTK 1.04.

Code the MIDlet

The J2ME platform consists of a set of layers, on top of which lies MIDP. We develop J2ME
applications on top of MIDP; thus, the applications are called MIDlets. Every J2ME
application must extend the M DI et class so the application management software can
control it.

Here is a blueprint of our MIDlet:

public class Uni Stock extends M D et inplenments ConmandLi st ener

{
Di spl ay di spl ay;

private Li st menu;
private Command commandSel ect ;
private Command commandExi t;

public Uni Stock() { /1 The constructor.
// Data initialization.
// Read saved data from RVS.

/'l Create U conponents and the first screen (menu).

}

public void startApp() { // Enter the active state.
/1 Display the first screen.
di spl ay. set Current (nmenu) ;

}

public void pauseApp() {
}

public void destroyApp(bool ean unconditional) {

/1 Clean up data streans, network, etc.

Page 4 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

}

public void comandActi on(Conmand c, Displayable s) {
noti fyDestroyed();
}

// Ot her custom zed net hods.

When the application management software invokes the st ar t App(), pauseApp(), or
dest r oyApp() method, the MIDlet's state changes. For example, when pauseApp() is
invoked, the MIDlet changes from an active to a paused state.

Because those methods signal state changes, they need to be lightweight in order to return
quickly. As you can see in the above code listing, we put most of the initialization process in
<i ni t > and the constructor, rather than in st ar t App() .

Warning: During application execution, st art App() and/or pauseApp() might be called
several times as the state changes. You should be careful never to place any initialization
code inside those two methods.

Build your stock with J22ME Page 5 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 3. High-level user interface design

General design overview

GUI APIs are defined in MIDP rather than CLDC. UniStocks will use both high-level user
interface APIs (such as Al er t, For m and exclusive components like Command), as well as
low-level ones (such as Canvas).

Scr een is the super class of all high-level interface APIs. Figure 4 shows a screen map of
UniStocks. Note that "Historical charts," with the gray background, uses the low-level API to
draw charts to the screen. The screen map does not show the intermediate-level screens,
such as alerts and error reporting screens.

Figure 4: UniStocks screen map

Add stocks

Live infa

Wiew stk info. Selection Menu

/\

°4—b- Main Menu Hislorical charis

Delete stocks

AN Delete one by one
Instructions Delete all

About

Avoid splash screens

What about a cool splash screen? | strongly recommend you don't display a splash screen.
Small devices have limited processor power. Displaying a splash screen will significantly
delay your application launch process. In addition, it will increase your final distribution file
size. (The limit of jar file size for some phones is as low as 30K!)

If you really want to display a splash screen, display it only when the user first launches the
MiDlet. Users will become frustrated if they must wait for your splash screen to display every
time.

In this application, we use a simple "About" alert to show the application's nature and license
information.

Screen navigation: The tree model

While developing my company's first few J2ME applications, my development team and |
found that it was difficult to navigate among screens. MIDP only provides the Di spl ay class
for one-screen display management. After some brainstorming, we created the tree model
shown in Figure 5, which is easily understood and adopted in J2ME development.

Page 6 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Figure 5: This image shows that a screen map is a typical tree.

Main Menuw

7N

w

Delete stocks @ . Node 1 =

Mode 2

Delete all stocks Delete one by one

Mode 3

As Figure 5 illustrates, our UniStocks screen map is actually a bidirectional tree. Each screen
in the map is a node, and the main menu is the root node.

In a tree structure like this, we can use the navigation techniques Depth-First-Search and
Breadth-First-Search. Further, the implementation will be easy.

Tree model implementation

A typical node implementation is as follows:

cl ass Node {
Node par ent ;
Vector children;
bool ean i sRoot ;

}

Similarly, we implemented the screen as a tree node:

i mport javax.microedition.nidlet.*;
i mport javax.mcroedition.|cdui.*;

/**

* SubForm A tenplate of all subforms, 'node' in a tree.

*

* @ersion $2.1 2002- JAN- 15%
* @ut hor JackWnd Li Guojie (http://ww. JackW nd. net)
*/

public class SubForm extends Form i npl enents ConmandLi st ener

{

Conmand backComand; /1 Back to the parent screen.
Uni St ock ndl et; /1 The M Dl et.

Build your stock with J22ME Page 7 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Di spl ayabl e parent; /'l The parent screen.
/**

* Constructor - pass in the midlet object.

*/

public SubForm(String title, Uni Stock mdlet, Displayable parent) {
super (title);
this.mdlet
t hi s. par ent

m dl et;
par ent ;

backCommand = new Command(" Back", Command. BACK, 1);

addConmmand(back Conmmand) ;
set ConmandLi st ener (this);

}
/**

* commandLi stener: Override this one in subclass!
* Call this nmethod in subclass: super.conmandAction(c, s)
*/
public void comandActi on(Conmand c, Displayable s) {
i f(c == backComand) ({
if(parent !'= null)
m dl et. di spl ay. set Current (parent);

We don't keep a children list in the node because we usually create new child screens on the
fly. (Of course, you can keep a children list if you don't want to create child screens every
time.) When the user presses the Back command, the system simply displays its parent
screen. The child might make some changes on the parent screen, and then display its
parent screen after the Back button is pressed.

Using this tree model, we can easily create user-friendly J2ME applications. As an
alternative, you can look into another navigation model, called a stack-based framework,
described by John Muchow in Core J2ME Technology and MIDP. (See Resources on page 39

)

A sample screen

The following code list is a simplified version of our "View Stock Details" form
implementation. The class For nVi ew extends the tree node implementation SubFor m
For nVi ewadds its own customized commands, methods, and so on. It also overrides the
commandAct i on() method for its customized command event-handling routine:

i mport javax.mcroedition.lcdui.*;

/**

* Form Display view stock form
*

* @ersion 1.0 2002- JUL- 07
* @ut hor JackWnd Li Guojie (http://ww. JackW nd. net)
*/

Page 8 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public class FornVi ew extends SubForm

{
Choi ceG oup choi ceSt ocks;
Conmand commandLi ve;
Conmand conmandOneMont h;
Conmand conmandThr eeMbnt h;
Conmand conmmandSi xMont h;
Conmand conmandOneYear ;
i nt node; // 1 - Live info.
// 2 - One nonth.
/!l 3 - Three nonths.
[/ 4 - Six nonths.
/1 5 - One year.
St ock S; /1l Sel ected stock.
St ockLi ve sl ;

St ockHi story sh;

public FornView(String title, Uni Stock mdlet, D splayable parent) {
super(title, nmidlet, parent);

commandLi ve = new Conmand("Live Info", Conmand. SCREEN, 1);

conmmandOneMonth = new Comand("One m chart", Command. SCREEN, 1);

commandThr eeMont h = new Command("Three m Chart", Command. SCREEN,
1);

commandSi xMonth = new Command("Six m Chart", Command. SCREEN, 1);

conmmandOneYear = new Command("One yr. Chart", Conmmand. SCREEN, 1);

addCommand(conmandLi ve) ;

addCommand(commandOnelont h) ;

addConmand(conmandThr eeMont h) ;

addCommand(commandSi xMont h) ;

addCommand(commandOneYear) ;

choi ceSt ocks = new Choi ceG oup("Sel ect a stock: ",

Choi ce. EXCLUSI VE) ;
for(int i=0; i<midlet.stocks.size(); i++) {
i f(Uni St ock. DEBUG
Uni St ock. debug(" Loadi ng #" + i);

Stock s = (Stock)m dl et. stocks. el ement At (i);
Exchange e = (Exchange) m dl et. exchanges. el ement At ((int)s. ex);
choi ceSt ocks. append(s.code + " [" + e.code + "]", null);

}
append(choi ceSt ocks) ;

}

public void comandActi on(Conmand c, Displayable ds) {
super. commandAction(c, ds);

i f(c == conmandLive || ¢ == commandOneMbnth || c==
conmandThr eeMont h
|| ¢ == commandSi xMonth || ¢ == commandOneYear)
{
i f(c == conmandLi ve)
node = 1;
el se i f(c == commandOneMont h)
node = 2;
el se if(c == commandThr eeMbnt h)

Build your stock with J22ME Page 9 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

node = 3;
el se i f(c == commandSi xMont h)
node = 4;
el se if(c == commandOneYear)
node = 5;
i f(choiceStocks == null || choiceStocks. get Sel ect edl ndex() == -1)
{
m dlet.reportError("Nothing selected to view");
s = null;
return;
}el se{

S =

(Stock) (m dl et. stocks. el enent At (choi ceSt ocks. get Sel ect edl ndex()));

Downl oad dl = new Downl cad(this, midlet);

Next For m next Form = new Next Forn{c. get Label (), nmidlet, this, dl);
m dl et. di spl ay. set Current (next Form ;

Thread t = new Thread(dl);
dl . regi sterlListener(nextFornm;
t.start();

Concepts behind MVC and user interface delegation

The classic Model-View-Controller (MVC) design pattern was introduced in the SmallTalk
programming environment. The model maintains the data state in the application domain.
The view represents the model in graphical or nongraphical form. The controller receives the
external input and interprets it in order to update the model or view. However, sometimes
separating the view from the controller is difficult. Instead, developers combine them, calling
it a representation. This modified version of MVC is often called user interface delegation.

Why use MVC or user interface delegation? With MVC and Ul delegation, you can adapt
your application painlessly. In a J2ME environment, MVC lets you do modular component
testing. You can fully test the business logic code before mixing it with the GUI part.

Using MVC/UI delegation

The following two code listings both try to add a new St ock object; however, they use
different approaches. The first one uses good MVC design. It clearly separates the
presentation from the model. Alternatively, the second one stuffs everything inside the
method.

If we want to add another attribute to the St ock class -- for example, company name -- the
St ock constructor needs one more parameter. We also need to check whether the user tries

Page 10 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

to add certain restricted stocks. For the MVC code, we simply modify the addSt ock()
method in Uni St ock. For the second listing, we must modify every code snippet that
contains the code for creating and/or adding stocks, which can be tedious:

/1 Called by certain events (controller), such as user input, etc.
public void process() {
i f(stockOK) {
/1 Add stock here
if(nextForm!= null) {
i f(mdlet.addStock(textCode.getString(),
(byt e) choi ceExchanges. get Sel ect edl ndex(), tenp))

{
next Form set St at us(true, "Stock added.");
}el se{
next Form set St at us(fal se, "Stock found, but could not be
added. ") ;
}
}
}
}
/1 Called by certain events (controller), like user input, etc.
public void process() {
i f(stockOK) ({
bool ean added = fal se;
/1 Add stock here ..
if(nextForm!= null) {
/1l Create a new stock.
Stock s = new St ock(t ext Code. get String(),
(byt e) choi ceExchanges. get Sel ect edl ndex());
/1 Check for duplication.
if(mdlet.stocks.indexO(s) !'=-1) {
debug("Stock already in records!");
}el se{
m dl et . st ocks. add(s);
added = true;
}
i f(added) {
next Form set St at us(true, "Stock added.");
}el se{
next Form set St atus(fal se, "Stock found, but could not be
added. ") ;
}
}
}

What's wrong with Alert?

Build your stock with J22ME Page 11 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Even for moderately sized applications, you need to use Al ert to notify the user of any
action. However, occasionally you may encounter some problems; for example, the user
might be confused by the improper use of Alert:

/1 After the 'Delete' command is pressed ...
Alert alert = new Alert("Information",

"Are you sure you want to delete all the data? ", null, null);
al ert.setTimeout (Al ert. FOREVER) ;
di splay.setCurrent(alert);

delete_all _data();
Systemout.println("Data del eted");

Some books use code similar to the above code to show their readers how to use Al ert .
However, that code is wrong. When you press the Delete command, the above code will run.
During the execution, you might find that "Data deleted" is printed immediately after the

Al ert displays (as shown here in Figure 6). If you press the Delete command
unintentionally, you cannot cancel or roll back deletion because the data has already been
deleted before you noticed it.

Figure 6: Deletion alert

IF'Flll“ B
nformation

L FE oL SUFE you
ant to delete all
ithe data?

Dione

Al ert is misused in the above code. According to the MIDP Java API documentation, "The
intended use of Al ert is to inform the user about errors and other exceptional conditions."”
Therefore, we need a dialog here. In the next panel, | will present a flexible, reusable

Di al og class.

Solution: The Dialog class

Please note that Di al og is not a standard class in CLDC or MIDP. The developers at
JackWind Group created the Di al og class shown in the following listing:

/**
* Fi | eNane: Di al og. j ava
* Ver si on: 1.0
*

Create on: 2001- JUN- 01

*

*

Al'l rights reserved by JackWnd G oup. (ww. JackW nd. net)

Page 12 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

*/
i mport javax.mcroedition.|cdui.*;

/**

Dialog: A class sinulating dialog for U .

@er si on 1.0 2001-JUN-01
*/@ut hor JackW nd Group (http://ww. JackW nd. net)

cl ass Di al ogLi stener {
public void onCK() {}
public void onYES() {}
public void onNQ() {}
public void onCANCEL() {}
public void onCONFI RM) {}

/1 RETRY.
/1 ABORT.
}
public class D alog extends Forminpl enents ConmandLi st ener {
Di spl ay di spl ay;
Di al ogLi st ener dll;
Di spl ayabl e par ent ;
public static final int OK = 1;
public static final int YES = 2;
public static final int NO = 4;
public static final int CANCEL = 8;
public static final int CONFI RM = 16;
Command cntX;
Command cnVES;
Command cmNO,
Command ¢mCANCEL;
Command cnCONFI RM
Stringltem text;
/**
* The constructor.
*@paramtitle Formtitle, nust not be null
* @aramtext Form text, nust not be null
* @ar am node Control commands. int > 0
* @aram M Dl et Qur nidlet, nust not be null
* @aram Di al ogLi stener dll, can be null
* @ar am par ent The parent form nust not be null
*/

public Dialog(String title, String text, int node, MD et mdlet,
Di al ogLi stener dll,
super (title);
this.dll =dlI;
this.text = new Stringltem null, text);
this.display = Display.getDisplay(mdlet);
this. parent = parent;

if((node & OK) !'= 0) {

cnK = new Command(" OK", Conmmand. SCREEN, 1);
addCommand(cntX) ;

Build your stock with J22ME Page 13 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

}

if((mode & YES) !'= 0) {
cMYES = new Command("Yes", Command. SCREEN, 1);
addCommand(cnES) ;

}

if((mode & NO !'= 0)
cmNO = new Command(" No", Command. SCREEN, 1);
addConmmand(cnNO) ;

}

if((mode & CANCEL) !'= 0) {
CnCANCEL = new Conmmand(" Cancel ", Command. SCREEN, 1);
addConmand(cnmCANCEL) ;

}

if((mode & CONFIRM !'= 0) {
cnCONFI RM = new Conmmand(" Confirnt, Comand. SCREEN, 1);
addCommand(cnCONFI RM) ;

}

append(text);
set CommandLi st ener (t hi s);

}

public void comandActi on(Conmand c, Displayable s) {
if(dll !'=null) {
if(c == cnmX)
dl I.onCK();
el se if(c == cmYES)
dl I.onYES();
else if(c == cmMNO
dl I.onNOX);
el se if(c == cnCANCEL)
dl I . onCANCEL();
el se if(c == cnCONFI RM
dl I . onCONFI RM) ;
}

m dl et. di spl ay. set Current (parent);

Using Dialog
Using our Di al og class, we can rewrite the code from the "What's Wrong with Alert?"

section:

Dialog dil = new Dialog ("Confirmation,"
"Are you sure you want to delete all data?",
Di al og. CONFI RM | Di al og. CANCEL,
m dl et,

new Di al ogLi stener () { /'l Anonynous inner class.

Page 14 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public void onCONFI RM) {
del ete_all _data();
Systemout.println("Data del eted");

}

/1 1f cancelled, do nothing.
}!
this

di spl ay. setCurrent (dl);

Now, when you press the Delete command, you will see the screen shown here in Figure 7.
You can confirm the deletion or simply cancel this action. Similarly, you can use this Di al og
to let the user answer simple questions with YES, NO, OK, and so on.

To create a new Di al og, we need a Di al ogLi st ener to act in response to user input. In
our implementation, Di al ogLi st ener is a class, not an interface. In this way, you simply
override any method necessary without implementing all the methods. In the above code, we
use an anonymous inner class as Di al ogLi st ener, and override the onCONFI RM)
method.

Figure 7: Confirmation dialog

E..nl D
onfirmation

L FE YOL SUFE YO
ant to delete all
fthe data?

|Cu:unfirm Cancel

Build your stock with J22ME Page 15 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 4. Low-level user interface design
What's next

In this section, we will build a Canvas to display stock price and volume charts.

After the user selects a stock symbol and historical period, the application will retrieve
historical data from the server. (I will discuss networking later.) Getting the necessary data,
the application will draw the actual charts onto the canvas (see on page below).

The user can view price and volume for every historical trading day by pressing the right
arrow to find the next day or the left arrow for the previous day. (See information about event
processing in subsequent panels) By pressing the up and down arrow, the user can zoom in
and zoom out (see Figure 9).

Figure 8: Stock chart canvas

Tl ED
H: $69.85, L: 38715

wWilume: 1095893800

]]

¥
i .]

] B [
r"'_

- Rl "' : "..I_'; L)
N b o
| 1—." 4 o Ly
1BrA 251772
Back Option

Figure 9: Zoom in and out

Tll"l E‘
H: $60.25, L. $67.15
“whlume : 109839800

Efi 3 4 | 15542600
.'_F_.II —, Py . Il-l .
[} |__\‘._.' -.l [} [*
tﬁ 55 4177000
1Bt 280712
Back Option

Page 16 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Low-level drawing

When creating a Canvas, we need to extend the Canvas class and override at least its
pai nt (G aphi cs g) method. By overriding the pai nt () method, we can draw the stock
chart:

protected void paint(Gaphics g) {
/' O ear background.
g. set Col or (255, 255, 255);
g.fillRect (0, 0, screenH, screenV);

/1l Draw Strings - Price, volune, etc.
g.setColor (0, 0, 0);
g.setFont (font);
g.drawsString("H $"+Uni Stock.getString(sr.priceH gh) +
", L: $" + UniStock.getString(sr.pricelLow),
1, 1, Gaphics. TOP | G aphics. LEFT);
g.drawstring("Volune: " + sr.volumm,
1, fontH + 2, Gaphics. TOP | G aphics. LEFT);

// Draw the chart.

for(int i=left+l; i<=right; i++) {
/'l For each visible day (except the first day).

St ockRecord current = (StockRecord)sh. vec. el enent At (i);

/1 Draw price chart.
/1 Multiplication first, then division to increase accuracy.

g. set Col or (255, 51, 0); /1l Set color
g. set StrokeStyl e(G aphi cs. SOLI D) ;
g. drawLi ne(

start X + (i-1-left)*step,

startY + Y - (last.priceHi gh-priceLowest)*Y/priceBase,
startX + (i-left)*step,

startY + Y - (current.priceHi gh - priceLowest)*Y/priceBase

)
/1 Draw vol une chart.

|l ast = current;

} /1 End for |oop.

The above code is our pai nt () method. Inside the method, we get a reference to the
Gr aphi cs object; thus, we can use it to do the actual drawing. These main drawing methods
are available in Gr aphi cs:

e drawArc(int x, int y, int width, int height, int startAngle, int
ar cAngl e)

e drawChar (char character, int x, int y, int anchor)
e drawi mage(lmage ing, int x, int y, int anchor)
e drawLine(int x1, int yl, int x2, int y2)

Build your stock with J22ME Page 17 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

drawRect (int x, int y, int width, int height)

drawString(String str, int x, int y, int anchor)

fillArc(int x, int y, int width, int height, int startAngle, int
ar cAngl e)

fillRect(int x, int y, int wdth, int height)

fill RoundRect(int x, int y, int width, int height, int arcWdth,
i nt arcHei ght)

In UniStock, we use drawSt ri ng() to draw price and volume for the selected day. Then we
draw the price and volume chart by concatenating small segments created by dr awLi ne()
for each period.

Drawing and filling basics

Small devices have a limited screen or display area. Therefore, you should plan carefully
before you start coding. Otherwise, a slight drawing inaccuracy will ruin your user interface.
One common problem here is that people are often unclear about how filling and drawing
methods work.

The origin of the graphics coordinate system is at the upper left corner, with coordinates
increasing down and to the right, as Figures 10 and 11 illustrate. The arguments required by
drawing and filling methods define a coordinate path (shown in the gray spots in the figures)
instead of pixel positions. This can sometimes be confusing.

Figure 10: Drawing a rectangle -- drawRect (2, 2, 4, 3)

(g - &

T T DD
2,2 OIEEEEEL 6,2
O NRERECC]

» OO
OCOmMOCCmer
2o-SERARRRRSE ¢
) I

D - Pixel = Virtual Grid

Figure 11: Filling a rectangle -- fillRect(2, 2, 4, 3)

Page 18 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

(0,0}

1 o [S [

c o BEEEEEEEE
COEEEEDO0
Mmml | | | |mmm
OOEEEERCD0
O s e R
o o

D - Pimal - Virtual Grid

Figure 10 is the screen view after invoking the method dr awRect (2, 2, 4, 3) (which
draws a rectangle starting with (2,2), width = 4, height = 3). Notice in Figure 10 that
dr awRect () draws an extra row of pixels on the rectangle's right and bottom sides.

Figure 11's filled rectangle is the result of fi | | Rect (2, 2, 4, 3).Unlike drawRect (),
fill Rect () fills the specified path's interior.

Here is the code for drawing a border rectangle for a canvas:
g.drawRect (0, 0, getWdth()-1, getHeight()-1);
Here is the code for filling a canvas' full screen:

g.fillRect (0, 0, getWdth(), getHeight());

Low-level event processing

Both Scr een and Canvas are direct subclasses of Di spl ayabl e. We can create
commands and add them to Scr een or Canvas, and then set a CommonLi st ener for them.
This is how high-level event processing works.

But Canvas can also handle low-level events. For low-level events -- such as game action,
key events, and pointer events -- we don't need to create and register listeners, because
Canvas has direct methods to handle them:

showNot i fy()
hi deNot i fy()
* keyPressed()
* keyRepeat ed()

Build your stock with J22ME Page 19 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

* keyRel eased()

e poi nterPressed()
e poi nterDragged()
e poi nt er Rel eased()
e paint()

The following is our event-handling routine in St ockCanvas:

protected void keyPressed(int keyCode) ({
swi t ch(get GaneActi on(keyCode)) {
case RIGHT:
cursor ++;

.ré.pai nt();
br eak;

case LEFT:
cursor --;

repaint();
br eak;

case UP:
zoom(true);
repaint();
br eak;

case DOM:
zoon(fal se);
repaint();
br eak;

}// End of swtch.
}

Once the user presses a key, the keyPr essed() method will be called with the pressed key
code as the only parameter.

Why do we need get GanmeAct i on() to process the keyCode? This way, we can ensure
our application's portability. get GaneAct i on() will translate a key code into a game action.
Those game actions should be available on all J2ME-supported devices. However, a hand
phone might have different code settings with a two-way pager. So we need to translate
those settings with get GaneActi on() .

Tip: Use game actions, such as UP, RIGHT, and LEFT, to ensure application portability.

Double buffering

Occasionally, you find that canvases flicker during repainting. This flickering is due to the fact
that the Canvas class must clear the previous screen (background) before it invokes the

Page 20 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

pai nt () method. Erasing Canvas's background results in flickering, which we can eliminate
using a well-known technique called double buffering.

Double buffering prepares the next Canvas content to display in an of f Scr een() buffer,
and then copies the complete display content to the screen. This way, we avoid erasing and
flickering.

The following is our rewritten code for pai nt () :

| mge of f Scr een; /1 For doubl e buffering.

protected void paint(Gaphics g) {
Graphics ig = null;

i f(isDoubleBuffered()) { // If the inplenmentation supports it..

g = g;
}el se{
i f(of fScreen == null)
of f Screen = | mage. cr eat el mage(screenH, screenV);
i g = of f Screen. get Graphi cs();
}
i g. set Col or (255, 255, 255); /1 Clear with white background.

ig.fillRect(0, 0, screenH, screenV);
/1 Drawing, filling with ig.

i f(isDoubleBuffered())
g. draw mage(of f Screen, 0, 0, G aphics. TOP| G aphics. LEFT);

If the implementation supports double buffering, we don't need to repeat it. Thus, we must
check it before double buffering in the pai nt () method.

Build your stock with J22ME Page 21 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 5. Record management system
Store data with RMS

MIDP provides us with the Record Management System (RMS), a records-based persistent
storage system. With RMS, you can persistently store data and retrieve it later. In UniStocks,
we use RMS to store stock symbols.

Recor dSt or e, which consists of a record collection, is the only class in the
j avax. m croedi tion. rns package. A record is a byte array (byt e []) of data. RMS
doesn't support data types for records, so you have to manipulate them yourself.

Here are some RMS facts:
» The naming space for Recor dSt or e is controlled at MIDlet-suite granularity

+ MIDlets within the same MIDlet suite can share Recor dSt or es
+ MiIDlets from different MIDlet suites cannot share Recor dSt or es
« When a MIDlet suite is removed, all Recor dSt or es associated with it are removed too.

Warning: RMS does not provide any locking operations. RMS ensures that all individual
Recor dSt or e operations are atomic, synchronous, and serialized. However, if a MIDlet
uses multiple threads to access a Recor dSt or e, the MIDlet must coordinate this access,
otherwise unintended consequences may result.

Understanding RecordStore

Records inside a Recor dSt or e are uniquely identified by their r ecor dl D, which is an
integer value. The first record that Recor dSt or e creates will have a r ecor dl D equal to 1.
Each subsequent record added to Recor dSt or e will have a r ecor dl D one greater than the
last added record.

Developers commonly mistake a Recor dSt or e to be a Vect or whose index starts from 1
instead of 0. That is wrong, which you may not realize unless you've worked on RMS
extensively.

For example, Figure 12 shows the internal state transition of our Recor dSt or e. State 2
does not contain any record with a r ecor dl D equal to 2 or 3. However, its 'Next ID' does not
change. As you can see clearly from the state representations below, Recor dSt or e is not a
Vect or . In the following panels, you will learn how to correctly add and retrieve records.

Figure 12: The RecordStore's internal state transition

Page 22 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Add 4 stocks: IBM, INTL, Delete INTL | 1 [EM PPy 1 [EM
NOK, SUNW. ; and NOK |4 SUNW |4 SUNW
2 i BE INTL

Legend: - recordlD -content of a record (franslated to String)
0

Controlling RecordStores

Open and create a RecordStore:

The code listing below tries to open a Recor dSt or e. If the Recor dSt or e identified by its
name does not exist, RMS will try to create it. The Recor dSt or e name should not exceed
32 characters. You should also try to avoid using duplicated names while creating

Recor dSt or es. The openRecor dSt or e() method throws several exceptions, so we need
to manage exception handling:

/**

* (pen a record store.
*/
private RecordStore openRecStore(String nanme) {
try {
/1 Open the record store, create it if it does not exist.
return RecordStore. openRecordSt ore(nanme, true);
}catch(Exception e) {
reportError("Fail to open RS;
return null;

+ nane) ;

Close a RecordStore:

If you don't need to use a Recor dSt or e anymore, you can simply close it to release the
resources it holds:

/1 Clean up.
try {

rsSt ockLi st. cl oseRecordStore();

}catch(Exception e) {
/1 reportError("Clean-up error:" + e.toString());

}

Erase a RecordStore:

Build your stock with J22ME Page 23 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Warning: When you delete a Recor dSt or e, you erase its associated records!

public void eraseRecordStore() {

try {
debug("Del eting record store ...");

Recor dSt or e. del et eRecor dSt or e(REC_STOCKLI ST) ;
}catch(Exception e) {
i f (DEBUG)
debug("Coul d not delete stores: " + e.toString());

Create records

As | mentioned earlier, a record is a byte array. However, we usually store data of types
String,int, and so on in records. Here we can use Dat al nput St r eamand
Byt eArr ayl nput St r eamto pack data into records:

private ByteArraylnputStream byteArrayl nput;
private Datal nput Stream dat al nput ;

byte[] recData = new byte[200]; // buffer

byt eArrayl nput = new Byt eArrayl nput Strean(recDat a) ;
dat al nput = new Dat al nput St r ean{ byt eArrayl nput) ;

/**

* Wite a new stock record.
* [

private int witeStock(Stock s) {

try{
byt eArrayCQut put.reset();

dat aQut put . wri t eUTF(s. code) ;
dat aQut put. wri teByte(s. ex);

byte[] record = byteArrayQutput.toByteArray();

/1 Add to record store.
return rsStockLi st.addRecord(record, 0, record.length);

}catch(Exception e) {
reportError("Failed to add stock to RVB: " + e.toString());
i f (DEBUG
e.printStackTrace();

return -1;

}

Page 24 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

In the code listing above, method r sSt ockLi st . addRecor d(record, O,

record. | engt h) has been invoked to create a new record in Recor dSt or e. The

r ecor dl Dis returned. We can use the following code to check whether or not a new record
has been created successfully:

/**

* Add a new stock.

*/

bool ean addStock(String code, byte ex, String tenmp) {
Stock s = new Stock(code, ex);

int id = witeStock(s);
if(id>0) {
s.rs_id =id;
st ocks. addEl enent (s) ;
return true;
}el se{
return false;

}

Retrieve data from RMS

In previous panels, | have shown that Recor dSt or e behaves differently than a Vect or.
You should never assume that a record with a certain r ecor dl D, such as 0, always exists.
You should use Recor dEnurner at i on to retrieve records. The Recor dEnurmer at i on class
represents a bidirectional record store Recor d enumerator. Recor dEnuner at i on logically
maintains a sequence of r ecor dl Ds of a Recor dSt or e's records. After obtaining

r ecor dl Ds from Recor dEnuner at i on, we can use this method to retrieve the byte array
content:

public int getRecord(int recordld, byte[] buffer, int offset)
t hrows Recor dSt or eNot OpenExcepti on,
I nval i dRecor dl DExcept i on,
Recor dSt or eExcepti on

In the previous panel, we used Dat al nput St r eamand Byt eArr ayl nput St r eamto pack
data into records. Similarly, we can use Dat aQut put St r eamand
Byt eAr r ayQut put St r eamto retrieve data from records. However, we reverse the order:

private ByteArrayQutputStream byteArrayCQutput;
private DataQutput Stream dat aQut put ;

byt eAr r ayQut put
dat aQut put

new Byt eArrayQut put Strean();
new Dat aQut put St r ean(byt eAr rayCQut put) ;

/**

* Load stock from RVS.
* Shoul d be called exactly once in the application cycle.

Build your stock with J22ME Page 25 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

*/
private void readStock() {
stocks = new Vector();

try {
int total = rsStockList.getNunmRecords();
if(total == 0) // No record..
return;
Recor dEnunerati on re = rsStockLi st. enunerateRecords(null, null,
fal se);

byt eArrayl nput.reset();

for(int i=0; i<total; i++) {
int id = re.nextRecordld();
i f (DEBUG)
debug("Reading " + (i+1) + " of total " + total + " id =" +
id);
rsSt ockLi st. get Record(id, recData, 0);
Stock s = new Stock (
dat al nput . readUTF(), /1 full nanme - String
dat al nput . readByt e() /1l num - byte
)
s.rs_id =1id; // Keep a copy of recordlD.
st ocks. addEl enent (s);
byt eArrayl nput.reset();
}
}catch(Exception e) {
i f (DEBUG)
e.printStackTrace();
}
}

Tip: Always keep a copy of r ecor dl Ds after loading data from the records. Those
r ecor dl Ds will be useful if you need to modify or delete records later.

Delete and modify records

You can easily delete a record if you know its r ecor dI D:

eraseStock(((Stock)stocks.elenentAt(i)).rs_id))

/*
* Erase a record.
* @arami recordlD
*
/
private bool ean eraseStock(int i) {
try {
rsSt ockLi st. del et eRecord(i);
}catch(Exception e) {
reportError(e.toString());
return fal se;

}

Page 26 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

return true;

}

Modifying a record is similar to creating a new record. Instead of creating a new record, we
overwrite an existing record. Referring to the code listing in the "Create Records" panel, we
change r sSt ockLi st. addRecord(record, 0, record.length); into
rsSt ockLi st. set Record(recordl D, record, 0, record.length).

Build your stock with J22ME Page 27 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 6. J2ME networking

Make the connection

CLDC provides a generic connection framework that we can use to send and retrieve data
from the Web. In addition, MIDP provides the Ht t pConnect i on interface, while the MIDP
specification requires that implementations support at least the HTTP 1.1 protocol. Thus, we
can use the Ht t pConnect i on to query a Web server and retrieve stock information for
UniStocks.

Using HttpConnection

HTTP is a request-response protocol in which the request parameters must be set before the
request is sent. In UniStocks, we use the following code to retrieve a stock's live and
historical data:

/'l private void getlnfo() throws Exception:

Ht t pConnection http = null;
InputStreamis = null;
bool ean ret = fal se;

/1 Form URL
if(formAdd !'= null) {
URL = baseURL + "?E=" + formAdd. choi ceExchanges. get Sel ect edl ndex() +
"&S=" + formAdd. text Code. getString() + "&T=0";
lelse if(fornView != null && fornView.s != null) {
/1 Create view baseURL.. ..

}

i f(Uni St ock. DEBUG
Uni St ock. debug(" Connecting to: " + URL);

try{
http = (H t pConnection) Connector.open(URL);

htt p. set Request Met hod(Ht t pConnecti on. GET) ;
i f (haslLi st ener)

dl . set Progress(1, 10);

/'l Query the server and try to retrieve the response
is = http.openl nput Strean();
i f(hasLi stener)

dl . set Progress(2, 10);

String str; /1 Tenp buffer.
int length = (int) http.getLength();
i f (hasLi st ener)

dl . set Progress(3, 10);

if(length '=-1) { // Length avail abl e.
byte data[] = new byte[length];
i s.read(data);
str = new String(data);
}el se{ /1 Length not avail abl e.
Byt eArrayQut put Stream bs = new Byt eArrayQut put Strean();

Page 28 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

int ch;
while((ch = is.read()) !'= -1)
bs.wite(ch);

str = new String(bs.toByteArray());

bs. cl ose();

i f(Uni St ock. DEBUG)
Uni St ock. debug(" Got Data:>" + str + "<");

/1 String downl oaded.
/'l Process string here.

i f(hasLi stener)
dl . set Progress(10, 10);

/1 Alert the user.
/1 AlertType. | NFO pl aySound(m dl et . di spl ay);

} catch (1 CeException e) {
i f(mdlet.DEBUG
m dl et . debug(" Downl oading error: " + e.toString());
if(formAdd !'= null) {
f or mAdd. st ockOK = fal se;
lelse if(fornmvView != null) {
}
finally {
if(formAdd !'= null)
f or mAdd. process();
if(formview != null)
; /1 Do sonet hi ng.

/1] dean up.
if(is !'=null)
is.close();

if(http !'= null)
http.close();

if(dl !'=null)
dl . onFi ni sh();

The connection exists in one of three states:

1. Setup: In this state, the connection has not been made to the server. http =
(Ht t pConnecti on) Connect or. open(URL) only creates an Ht t pConnect i on,
which is not yet connected.

2. Connected: After all necessary headers have been set, invoking
htt p. openl nput St rean{() will result in a server connection. Request parameters are
sent and the response is expected. Once the application downloads, the connection may
move to the next state.

3. Closed: The connection has been closed and the methods will throw an | OExcept i on if

Build your stock with J22ME Page 29 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

called. In our case, we close all the data streams and connections before exiting our
customized download method.

Using threads with HttpConnection

Nearly all 22ME introductory books demonstrate some primitive Ht t pConnecti on
examples. Without providing visual feedback during a network connection, you leave the
user waiting, staring at a frozen screen (and today's slow wireless networks make the
situation worse). Consumer electronic users normally have much higher expectations than
desktop users.

Therefore, in UniStocks, we use multithreading to tackle this problem. After pressing a key or
command for download, the user will see a screen, as illustrated by on page , and survey
the progress through the gauge. If he changes his mind, he can simply press Cancel and
return to the previous screen. After data downloads, the user will see the chart screen,
shown in Figure 14 (repeated here from Figure 8). This way, everything runs or stops
gracefully. | will show a detailed implementation in the next panel.

Figure 13: Downloading screen

Three m. Chart

Povvnload Progress

1) [T

[Cancel

Figure 14: Stock chart canvas

Page 30 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Fanntl ED
H: 69 .85, L: $67.15

wWolume: 10939200

1Bk 280012
Back Option

Tip: Use a gauge rather than an animated picture to display progress.

Implementation multithreading with connection

We have two major goals: Show the user connection progress, and give the user control.
When the user presses the Download command, the system will create and start a new
thread for download. At the same time, the download screen is created and displayed to the
user:

i f(c == conmandOneMont h) {
node = 1;
Downl oad dl = new Downl cad(this, midlet);
/1 Downl oad screen.
Next For m next For m = new Next Forn(c. get Label (), nidlet, this, dl);
m dl et. di spl ay. set Current (next Form ;
Thread t = new Thread(dl);

dl . regi sterlListener(nextForm;
t.start();

If the user presses Cancel while downloading, downloading should stop immediately.

i f(c == commandCancel && (! finished)) {
i f(downl oad != null)
downl oad. setlnterrupted();

m dl et. di spl ay. set Current (parent);
}

For our implementation, we'll use an interruption technique. In our get | nf o() method, we

Build your stock with J22ME Page 31 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

frequently check whether the downloading thread has been interrupted. If a thread has been
interrupted, | nt er r upt edExcept i on is thrown and the r un() method catches this
interruption and the thread exits.

You can use another technique: Close the connection when Cancel is pressed. Once the
connection is closed, Connect i on methods will throw an | OExcept i on if called. However,
any streams created from connection are still valid even if the connection has been closed.

My development team and | have found that the first interruption technique performs better.

The Download class

In the last panel, | briefly discussed the techniques for graceful multithreading. The code list
below provides a detailed implementation. Here is the code for the Downl oad class:

public class Downl oad i npl ements Runnabl e

{
private Uni Stock m dl et;
private String baseURL; /'l Retrieve URL from JAD file.
private String URL;
privat e bool ean i nterrupted;

/1 For a O ass object, only one of the follow ng
/1 objects is not null.

private For mMAdd f or mAdd,;

private For mvi ew f or nVi ew;

/1 We only allow one downl oad |istener so far.
Downl oadLi st ener dl;
bool ean haslLi st ener;

publ i ¢ Downl oad(Uni Stock mdlet) {
this.mdlet = nmdlet;
baseURL = midl et. get AppProperty(nidl et. URL_KEY);

}
/**
* Thread starts from here!
*/
public void run() {
try {

getInfo();
}catch(Exception e) {
i f(m dl et. DEBUG
m dl et . debug(" Exception caught: " + e.toString());
}

}

public void setlinterrupted() {
interrupted = true;
i f(mdlet.DEBUG
m dl et. debug("Interrupted!");
}

public boolean interrupted() {

Page 32 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

return interrupted,

}
/**

* Do the real work here.

*/

private void getlnfo() throws Exception {
Ht t pConnection http = null;
InputStreamis = null;
bool ean ret = fal se;

if(formAdd !'= null) {
URL = baseURL + "?E=" +
f or mMAdd. choi ceExchanges. get Sel ect edl ndex() +
"&S=" + formAdd.text Code.getString() + "&T=0";
lelse if(formview!= null && fornView.s != null) {
/1l Create view baseURL....

}

i f(Uni St ock. DEBUG)
Uni St ock. debug(" Connecting to: " + URL);

try{
http = (H t pConnection) Connector.open(URL);

htt p. set Request Met hod(Ht t pConnecti on. GET) ;
i f(hasLi stener)
dl . set Progress(1, 10);

i f(interrupted)
t hrow new | nt er rupt edException();

is = http.openl nput Streamn();
i f(haslLi stener)

dl . set Progress(2, 10);
i f(Uni St ock. DEBUG

Uni St ock. debug(" Connecting to: " + URL);

String str; /1 Tenp buffer.
int length = (int) http.getLength();
i f (hasLi st ener)

dl . set Progress(3, 10);

i f(interrupted)
t hrow new | nt errupt edException();

if(length '=-1) { // Length valid.
byte data[] = new byte[l ength];
i s.read(data);
str = new String(data);
}el se{ /1 Length not avail abl e.
Byt eArrayQut put St ream bs = new Byt eArrayQut put Streamn() ;

int ch;
while((ch = is.read()) !'= -1)
bs.wite(ch);

str = new String(bs.toByteArray());
bs. cl ose();

}

i f(interrupted)
t hrow new | nt er rupt edException();

Build your stock with J22ME Page 33 of 40

i bm cont devel oper Wr ks

i f(Uni St ock. DEBUG)
Uni St ock. debug(" Got Data:>" + str + "<");

/1 String downl oaded.
/'l Process data here.

i f(hasLi stener)
dl . set Progress(10, 10);

/1 Alert the user.
/1 AlertType. | NFO pl aySound(m dl et . di spl ay);

} catch (1 CeException e) {
i f(mdlet.DEBUG
m dl et . debug(" Downl oading error: " + e.toString());
if(formAdd !'= null) {
f or mAdd. st ockOK = fal se;
lelse if(fornmvView != null) {

}
} finally {
if(formAdd != null)
f or mAdd. process();
if(formview != null)
; /1 Do sonet hing.

/1l O ean up.
if(is !'=null)
is.close();
if(http !'= null)
http.close();

if(d != null)

dl . onFi ni sh();
}

} // End function getlnfo();

Page 34 of 40

Presented by developerWorks, your source for great tutorials

Build your stock with J2ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Server-side design

Consider the server side

The UniStocks application is based on a client-server architecture. (The MIDlet is the client
side.) In previous sections, we have designed the client part. This section focuses on the
server side. Before we create a server-side program, we must carefully plan what we should
put on the server side, and what we should leave on the client side.

Some advantages of server-side computing are:
» Great processor power

» High-speed connection
» Flexible computing choices (languages, platforms, etc.)

Take advantage of the server side

Now that we know some advantages of server-side programs, how can we utilize them to
create our own server-side programs? The goal is to improve the whole application's
performance, on the server side and the client side. To help us overcome the limitations of
J2ME and small devices, server-side programs can:

» Move the heavy computing part to the server side

» Do floating point computation on the server side

» Preprocess information on the server side to improve performance
« Overcome other J2ME limitations, such as creating pictures

* Reduce upgrade cost: One upgrade on the server side versus an upgrade of every
software suite on the client side

Collecting information

The server side provides us with stock information. The best way to get that stock data is
from a fast database; we can then send the data to the client. However, we usually don't
have such a convenient database to access. Our solution here is to parse the Yahoo!
Finance Web pages, which provide stock information from major exchanges, and then
forward the formatted data to the client side. You can easily add your regional exchanges in
the same way.

You may directly process the Web pages on the client side. However, once the Web pages
change their format, you have to update all installed MIDlets. If you later have a faster way to
access the stock data, you could simply update the server side only.

Tip: You are not limited to use Java language in server-side programming. Since the client

side does not care about the server-side implementation, you can use your favorite script
languages, such as Perl, ColdFusion, and so forth.

Build your stock with J22ME Page 35 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Processing and delivery

If you supply a valid stock symbol, the Yahoo! Finance server will return the following live
data:

Synbol Current Price, Date, Tine, Change Open High Low Vol une
"I BM', 76.50, "8/15/2002", "4:00pnt, +1.58, 75.40,76.71,74.60, 9269600

If the MIDlet requests a certain stock's live information, it must supply the stock's symbol to
guery the server. The server then queries the Yahoo! Finance server to get information. The
server should return the following information to the MiDlet:

» Status: Success or failure (1 for success, 0 for failure)
< Any data if applicable

Why do you need a status byte? When you surf the Web, you may experience the following
problems:

HTTP gateway timeout
Web server too busy
HTTP internal error
Script running timeout

Even if the Web server is O.K. and your scripts are correct, the user might still encounter the
above problems due to multiple gateways between the client and the Web server. Using a
status byte, we can check whether or not the data received by the client is valid. If the data is
not valid, we simply discard it. By doing this, we also reduce parsing errors. Here is the
sample output (live data):

[Status * last price * price change * open price * high * |low * vol une]
1 * 73200 *1020 *73750 *73990 *73070*4586500*

Similarly, the server could retrieve the historical data from Yahoo! Finance and send it to the
client. Here is the sample output (historical data):

[status * year-nonth-day price high price low volunme *]
1 * 2-9-6 73990 73070 4586500* . ..

Page 36 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 8. Overcome J2ME limitations

Floating point computation

J2ME does not support floating point computation. In UniStocks, we need floating point
support for stock prices and so forth. To solve this problem, we use the following technique:
When making floating point computations, we multiply the floating point numbers by 1000,
trim them to integers, and then we calculate. After the computation, we might get a result like
12200, which stands for stock price 12.2. To display it correctly, we process a string using
the get Stri ng() method in the Uni St ock class:

/**

* getString: Forma String froma big integer.

* We assune the integer has been multiplied by 1000.

*/
public static final String getString(int i, boolean trinZero, bool ean
i sPositive) {

if(isPositive & i < 0) {

return " NA";
}

if(i==0) return "0";
boolean neg = (i >0 ? false : true);
String str= Integer.toString(i);
if(neg) {
= -i; /1 Make it positive first.
str = str.substring(1);

}
if(i < 10) { /1 Like 9.
str = "0.00" + str;
}else if(i < 100) { // Like 98.
str = "0.0" + str,;
}else if(i < 1000) { // Like 450.
str = "0." + str;
}el se{ /1 Like 10900.
str = Integer.toString(i);
str = str.substring(0, str.length()-3) + "." +

str.substring(str.length()-3);

i f(neqg)
str = "-" + str;
if(tringero) { /'l Trimextra zeros
int dotP = str.indexCOr('.");
int pos = -1;
if(dotP < 0) [/ if no'." is found.
return str;

for(pos = str.length()-1; pos >= dotP; pos --)
if(str.charAt(pos) !'="'0")
br eak;

i f(pos == dotP)
/1 1f nothing is left behind '.', renove '.' too.
pos -= 1,

return str.substring(0, pos+l);

Build your stock with J22ME Page 37 of 40

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

return str;

Hardcoding technique

My development team and | developed a shooting game recently. During development, my
colleagues complained that J2ME has no sin, cos, or tg methods. Without knowing those sin
and cos values, shooting would be uncontrollable. Finally, we identified that we only had 15
different angles, so we hardcoded their sin and cos values into the program. You could use
this hardcoding technigue to solve similar problems.

The MIDlet suite application descriptor file

The application management software needs the JAD file to obtain information needed to
manage resources during MIDlet execution.

If you use the WTK, you can see your JAD file's attributes by pressing the Settings button.
The first tab displays the required attributes, some of which you need to modify:

» MiDlet-Name: The name of MIDlet suite
* MiDlet-Vendor: The default value is Sun Microsystems; change it to your company name
» MiDlet-Version: The default value is 1.0; change it to the application's version

In UniStocks, we create a user-defined attribute: | NFO_PROVI DER_URL (key). This attribute
specifies the stock information provider's URL (value):
http://www.jackwind.net/resources/pj2me/StockinfoProvider.php. In our program, we use the
following code to retrieve this value:

static final String URL_KEY = "I NFO _PROVI DER_URL";
publ i ¢ Downl oad(Uni Stock midlet) {

this.mdlet = nmdlet;
baseURL = nidl et. get AppProperty(m dl et. URL_KEY);
}

If you installed the St ockl nf oPr ovi der servlet on your Web server, you may want to set
this URL pointing to the servlet's exact address.

Page 38 of 40 Build your stock with J22ME

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 9. Wrap up

What we covered

In this tutorial, we have covered almost every aspect of J2ME by developing a typical
application -- UniStocks.

You received great hands-on experience in MIDLet basics, high-level user interface design,
low-level user interface design, persistent storage mechanisms, J2ME networking, and
server-side design, among other areas. In addition, | presented various frameworks and
techniques that you can use to develop your own J2ME applications with ease and
confidence.

Source/binary code configuration

1. Download pj 2ne. zi p from http://www.jackwind.net/resources/pj2me.

2. Unzip pj 2ne. zi p to a directory. Read carefully the license in | i cense. t xt. The
Uni St ocks folder contains the MIDlet client source code and resources; the j ackwi nd
folder contains server-side code (the servlet).

3. Run UniStocks. Copy the Uni St ocks folder to WTK's apps directory, and UniStocks
should appear in your project list of WTK (‘Open Project ..."). Open UniStocks and run it.
The default stock provider is
http://www.jackwind.net/resources/pj2me/StockinfoProvider.php, so you should configure
the proxy setting before connecting to our server.

4. Set up your own stock provider (optional). First configure your proxy host and proxy port in
file St ockl nf oPr ovi der . j ava (inside the j ackwi nd folder). Compile source file and
install the servlet. For details, please refer to READMVE. t xt under j ackwi nd/ V\EB- | NF.
Set the UniStocks JAD file's user-defined attribute | NFO_PROVI DER_URL to your servlet
URL,; for example:
http://127.0.0. 1: 8080/ ackwi nd/ servl et/ St ockl nf oProvi der

Resources

» Download the UniStocks binary and source from http://www.jackwind.net.
» Download the Java 2 Platform, Micro Edition, Wireless Toolkit.

« Create your J2ME application with IBM VisualAge Micro Edition.

» Check out Borland JBuilder Mobile Set 2.0 as an IDE alternative.

* Sun One Studio 4.0 EA Mobile Edition is a free, feature-rich IDE.

* Visit Sun's wireless developer homepage.

* View JSR 30: J2ME Connected, Limited Device Configuration.

* View JSR 37: Mobile Information Device Profile for the J2ME Platform.

» To know more about multithreading with Java, read Java Thread Programming, David M.
Geary (Sams, 1999).

» To know more about patterns, read Design Patterns: Elements of Reusable
Object-Oriented Software, Richard Helm, et al. (Addison-Wesley, 1994).

« A must-read for every user interface designer: The Design of Everyday Things, Donald

Build your stock with J22ME Page 39 of 40

http://www.jackwind.net/resources/pj2me
http://www.jackwind.net/resources/pj2me
http://java.sun.com/products/j2mewtoolkit/
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.embedded.oti.com/compat/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://www.borland.com/mobile/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://forte.sun.com/ffj/index.html
http://wireless.java.sun.com/
http://www.jcp.org/jsr/detail/30.jsp
http://www.jcp.org/jsr/detail/37.jsp
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0672315858/qid%3D1033703327/sr%3D11-1/ref%3Dsr%5F11%5F1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1033703028/sr=2-2/ref=sr_2_2/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152
http://www.amazon.com/exec/obidos/ASIN/0385267746/qid=1033702915/sr=2-1/ref=sr_2_1/104-0785469-3031152

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Norm (MIT Press, 1998).

« For more information on the stack-based framework, read John Muchow's Core J2ME
Technology and MIDP (Prentice Hall/Sun Microsystems Press, 2001).

For more information, visit Wireless zone on IBM developerWorks.
Visit the author's Web site http://www.jackwind.net for more J2ME resources and services.

Feedback

Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Page 40 of 40 Build your stock with J22ME

http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://wireless.java.sun.com/midp/chapters/muchowcore/
http://www-106.ibm.com/developerworks/wireless/
http://www-106.ibm.com/developerworks/wireless/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www.jackwind.net/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	J2ME tutorial overview
	About the author
	About UniStocks

	Getting started
	Choose your development tools
	Code the MIDlet

	High-level user interface design
	General design overview
	Avoid splash screens
	Screen navigation: The tree model
	Tree model implementation
	A sample screen
	Concepts behind MVC and user interface delegation
	Using MVC/UI delegation
	What's wrong with Alert?
	Solution: The Dialog class
	Using Dialog

	Low-level user interface design
	What's next
	Low-level drawing
	Drawing and filling basics
	Low-level event processing
	Double buffering

	Record management system
	Store data with RMS
	Understanding RecordStore
	Controlling RecordStores
	Create records
	Retrieve data from RMS
	Delete and modify records

	J2ME networking
	Make the connection
	Using HttpConnection
	Using threads with HttpConnection
	Implementation multithreading with connection
	The Download class

	Server-side design
	Consider the server side
	Take advantage of the server side
	Collecting information
	Processing and delivery

	Overcome J2ME limitations
	Floating point computation
	Hardcoding technique
	The MIDlet suite application descriptor file

	Wrap up
	What we covered
	Source/binary code configuration
	Resources
	Feedback

